
http://www.influxis.com

http://www.influxis.com

4

Editor’s Note

06/2010 (14)

Dear Readers!
The recent introduction of the new Apple iPad has stirred the discussion over the future of web
content and application runtime formats, and shed light onto the political and business battles
emerging between Apple, Adobe and Google. These discussions are often highly polarized and
irrational. Developers of Rich Internet Applications and Content have been blogging and buzzing
about HTML5 and whether it is a Flash Killer technology since Steve Jobs published his Thoughts
On Flash letter in April. His position explaining why Flash would not be supported on Apple
iPhones, iPads and iPods is explained, but if we readers think Steve is being forthright in helping
us understand the wisdom of his decision, then think again...more explanation and thougths on the
Special Report on page 10.

This month, we have a great selection of articles, but let’s start from tools that we recommend for every Flash/Flex Developer
– SourceMate: An ActionScripter’s Toolbox – a fantastic tool. Everyone should try it, but before you do, please read Louis
DiCarro article on page 14.

In The Game section, you will find Chris Hughes’ article on how to Monetize Your Web Game really worth reading – so you
could make great money on your knowledge.

Besides that, learn how to use Flash Capatbilities in Flex apps, see what is The Ultimate Checkbox List Pattern, and much
more inside! Let’s not waste your time – let’s skip to the great August issue content.

We look forward to sharing more information with the community in the coming weeks and months. If you have questions,
comments, or concerns, please don’t hesitate to contact me directly, or ask our authors about any details.

I want to thank you for your continued commitment to the FFD mag community, and I look forward to new opportunities to
work together.

With best regards,.

Ewa Samulska
ewa.samulska@ffdmag.com

Editor in Chief: Ewa Samulska ewa.samulska@ffdmag.com
Proofreaders: Betsy Irvine, Patrick French

DTP Team: Ireneusz Pogroszewski
ireneusz.pogroszewski@software.com.pl
Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@software.com.pl

Senior Consultant/Publisher: Paweł Marciniak

Publisher: Software Press Sp. z o.o. SK
ul. Bokserska 1 02-682 Warszawa Poland Worldwide Publishing

Software Press Sp. z o.o. SK is looking for partners from all over the World.
If you are interested in cooperating with us,
please contact us by e-mail: cooperation@software.com.pl

Whilst every effort has been made to ensure the high quality of the magazine, the
editors make no warranty, express or implied, concerning the results of content usage.

All trade marks presented in the magazine were used only for informative purposes.
All rights to trade marks presented in the magazine are reserved by the companies
which own them.

Thanks to the most active and helping beta testers:
Russell TangChoon, Lee Graham, Jassa Amir Lang, Ed Werzyn, Yann Smith-Kielland,
Justus, Csomák Gábor, Kevin Martin, Charles Wong, Ali Raza, Almog Koren, Izcoatl
Armando Estanol Fuentes, Lionel Low, Michael J. Iriarte, Paula R. Mould, Rosarin
Adulseranee, Sidney de Koning

To create graphs and diagrams we used program by
 company.

The editors use automatic DTP system
Mathematical formulas created by Design Science MathType™

ATTENTION!
Distributing current or past issues of this magazine – without permission of the
publisher – is harmful activity and will result in judicial liability.

DISCLAIMER!
The techniques described in our articles may only be used in private, local net-
works. The editors hold no responsibility for misuse of the presented techniques
or consequent data loss.

mailto:ewa.samulska@ffdmag.com
mailto:ewa.samulska@ffdmag.com
mailto:ireneusz.pogroszewski@software.com.pl
mailto:ireneusz.pogroszewski@software.com.pl
mailto:cooperation@software.com.pl

http://www.flash-gallery.com

6
06/2010 (14)

CONTENTS

Influxis
www.influxis.com ... 2-3

Mediaparts Interactive S.A
www.page-flip.com ...5

Digicrafts
www.digicrafts.com.hk 7

Kevin Ruse + Associatess Inc.
www.kevinruse.com .. 9

Exsys
www.exsys.com ...13

Kindisoft
www.kindisoft.com ..19

SauceLabs
www.saucelabs.com ...33

Gamersafe
www.gamersafe.com ... 43

Flash and Math
www.flashandmath.com 47

FusionMaps for Flex
www.fusioncharts.com/flex 51

ActionScriptJobs.com
http://actionscriptjobs.com/ 53

The issue 6/2010 sponsored by Advertisers:

Flash Error with Flickering Tweens
Tom Rassweiler – Manager of Game Development

Sometimes when a �ash movie is compiled some of the
animated tweens will become corrupted in the .swf. This is a
very strange problem and results in animations seeming to
�icker, displaying only the keyframes and not the tweened
frames. This is made more difficult because the compiler does
not give you any warning of this corruption. You will only see
it when you play the movie.

The bug is easily �xed by going into the library of the �a
and opening the corrupted movie clip, and then recompiling.
No actual adjustment of the code is required.

However, it is still time consuming and irritating, so it is
possible to create a JSFL command that will go through the
process of opening and looking at each movie clip before
compiling. Using this preventative measure, you can avoid
this error entirely.

doc = fl.getDocumentDOM();
lib = doc.library;
it = lib.items;
for(var i in it){
 if(it[i].itemType == „movie clip”){
 lib.editItem(it[i].name);
 }

}

Tip of the issue

Special Report

08 Flash Player 3D is Coming Soon!

BY LEE GRAHAM

10 What HTML5 Means For Flash
 – Minority Report
BY JOHN MARX

InBrief

12 News

BY CSOMÁK GÁBOR

Tools

14 SourceMate:
The ActionScripter’s Assistant
BY LOUIS DICARRO

16 Entity data Interchange format

BY WAYNE IV MIKE

LIVECYCLE

20 Setting up model-driven LiveCycle
development with LiveCycle Data Services ES2
BY SUJIT REDDY G, DUANE NICKULL, MICHAEL PETERSON

GAMES

26 The right SmartfoxServer protocol for
multiplayer games
BY FERNANDO BEVILACQUA

28 Monetizing Your Web Game Part 1

BY CHRIS HUGHES

ActionScript Development

30 Using flash Capatbilities in Flex apps

BY MARC PIES

Flex Development

34 The Ultimate Checkbox List Pattern

BY RICHARD C HEAVEN

40 Flex 4 – Parental Concerns

BY HUW COLLINGBOURNE

FLEX and PHP

44 Flex Charting: How to build a structure data in
PHP to work with Charts in Flex
BY KEVIN SCHROEDER, RYAN STEWART

Interview

48 Building Expert Systems in Flash with Exsys
Corvid Add Complex Logical Processing to Flash

Books Review

52 Adobe Flash Catalyst CS5 – Classroom in a
Book
BY ALI RAZA

http://www.influxis.com
http://www.page-flip.com
http://www.digicrafts.com.hk
http://www.kevinruse.com
http://www.exsys.com
http://www.kindisoft.com
http://www.saucelabs.com
http://www.gamersafe.com
http://www.flashandmath.com
http://www.fusioncharts.com/flex
http://actionscriptjobs.com/

http://www.digicrafts.com.hk

06/2010 (14)8

While the details are very hush hush until Adobe
MAX, I have learned the following:

• There is a next generation Flash 3D API coming
• It will work across ALL devices that support Flash

Player such as PCs, Android mobiles/tablets and AIR.
• They are saying it is nothing like you’ve seen

before!

If I had to guess, I’m thinking that this new Flash 3D API
is going to put things like Papervision 3D to shame.

So if you can head out to Adobe MAX October 23-27
in Los Angeles (http://max.adobe.com/) or stay tuned to
Adobe.tv (http://tv.adobe.com/) for more information. If you

are flip-flopping between attending MAX or not, check out
all of the great Sessions (http://max.adobe.com/schedule/
by-day/) that will be happening over the 5 day period!

Flash Player 3D
Well just when we thought there couldn’t be much more
excitement after the launch of CS5, AIR Android & Google
TV... Thibault Imbert, Product Manager at Adobe, released a
blog post titled, Flash Player 3D Future session at Max 2010
(http://www.bytearray.org/?p=1836). In this post, he hints at
many improvements for supporting 3D in Flash including
better textured z-buffered triangles and GPU acceleration.

is Coming Soon!

LEE GRAHAM
Lee Graham is co-founder of TRImagination (http://trimagi
nation.posterous.com), an educational app company based
in the United States. He has been involved in developing
interactive eLearning applications for �ve years and working
with Adobe in beta testing Flash CS5, AIR 2.0, AIR for Android
& Flash Player 10.1. You can connect with him on Twitter:
http://twitter.com/donaldleegraham or his Blog: http://l33.me/.

http://www.bytearray.org/?p=1836
http://max.adobe.com/
http://tv.adobe.com/
http://max.adobe.com/schedule/by-day/
http://max.adobe.com/schedule/by-day/
http://trimagination.posterous.com
http://trimagination.posterous.com
http://twitter.com/donaldleegraham
http://l33.me/

http://www.kevinruse.com

06/2010 (14)10 06/2010 (14) 11

When Steven Spielberg cast Tom Cruise
as John Anderton, head of the precrime
department of the police in Washington D.C.

2054, he probably didn’t realize that the technology
portrayed as futuristic in his 2002 production, Minority
Report, would arrive just eight years after its debut
onscreen. And while Spielberg’s aim was to entertain,
his visionary clairvoyance is helping define the future of
Adobe Flex and Flash Technologies.

While the movie contains many portrayals of
computing technology, two particularly poignant scenes
are when Cruise waves a gloved hand in front of a
video wall to drag-and-drop video clips and play-pause-
resume the visions of precogs, and when he walks
swiftly through the mall of the future trying to ignore
video walls that advertise Lexus and Guinness and
even call his name as he passes. The kiosk of the future
not only recognized who John Anderton was but it also
tailored the ad content to his demographic and historical
record as a consumer.

What does this have to do with Flash and Flex? You
ask... the answer is everything. Let’s back up.

Developers of Rich Internet Applications and Content
have been blogging and buzzing about HTML5 and
whether it is a Flash Killer technology since Steve Jobs
published his Thoughts On Flash letter in April. His
position explaining why Flash would not be supported
on Apple iPhones, iPads and iPods is explained, but
if we readers think Steve is being forthright in helping

us understand the wisdom of his decision, then think
again. What Jobs doesn’t explain in his now infamous
letter is his announcement of a new mobile advertising
platform called iAd on April 8th.

It would appear that blocking all of the New York
Times’ ads on his new iPad reader isn’t to protect your
battery life, but instead to give him a way to sell air, and I
don’t mean Adobe Air! An article published by Forbes on
April 20, 2010 titled Great Expectations notes that while
iPad sales account for only 4% of Apple’s revenue, the
announcement of the iAd service caused Apple’s stock
price to increase by 8%. Consider the fact that when the
more than one million iPad users pull up publications on
their iPads with Flash-based advertising, what they see
isn’t an ad at all, instead they see a white-out section
of the page where the ad would normally appear and
a shiny blue heart in the middle of it. I can almost see
Jobs smirking from his Palo
Alto office every time I see
the heart. I am surprised he
didn’t take a bite out of the
now all-to-familiar icon.

But Steve isn’t the
only one whose recent
actions we might consider
when choosing our future
development platforms.
Another key player in our
saga is Ian Hickson, the

The Minority Report
With the now infamous letter from Steve Jobs bashing
Adobe Flash and supposedly explaining why Apple will not
allow Flash content on its i-everything devices, developers
steeped in Adobe Flash and Flex technologies have to be
pondering the future of their craft. Fortunately, for us,
Mr. Jobs’ letter isn’t the last word in this already far-
too-long saga of tech industry titans.

When considering the useful life of
applications and content, developers and
authors must rely more on the motivation to
create it than the underlying technologies
supporting it.

Ignoring HTML5 and the H.264 Video
Codec would be kin to trying to write web
applications with COBOL, it’s something we
just aren’t going to do. Fortunately Adobe
integrates with both well.

06/2010 (14)10 06/2010 (14) 11

and many other codecs. While Google is intent on
being part of shaping future standards like Ian’s HTML5
specification, they in practice are technology agnostic.
They have no religion or bigotry. They love everyone.
Maybe that should be the vendor with the heart icon.

But Google’s indifference to technology wars may
prove that they are in fact the biggest driver of change.
By doing nothing, they watch from the sidelines
as formidable titans duke out their seemingly petty
differences about html tags, namespaces and codecs.
It reminds me of Neville Chamberlain’s position on
Germany and Italy’s politics prior to World War II. And in
the realm of cyberspace the coming sea change will be
just as disruptive to Internet commerce as real war is to
international trade.

As more dollars flow into companies selling
applications and content stemmed by traditional
companies’ desire to sell everything from diapers to
cheese snacks, more dollars are available to those
of us who program. And whether today we write
Flex applications for a manufacturing company’s
Intranet or code ads for a publisher of GeoSpatial
search engine optimization, it makes no difference.
We live in a growing economy. In spite of nations
going bankrupt and government bailouts, those of us
privileged enough to be skilled in creating something
from nothing and selling air or helping others sell air
have bright futures.

Apple will derive revenue from vertical integration
similar to how Rockefeller made oil money after giving
away kerosene lamps for free. The air they will sell is
the invisible host of the cellular signals and much like
the air that carried RF signals to your NTSC television
sets until the ATSC standard was introduced in 2009,
the air that Google, Apple and others sell will ultimately
host products such as Adobe Air as well. The reason is
best exemplified by a program written by Chris Teso that
demonstrates how a webcam image can be captured
and analyzed in real time tracking his finger as it selects
and moves objects across his screen.

In Teso’s video demo of the Actionscript program
he shows how Spielberg’s glove isn’t even necessary.
Why Teso used ActionScript instead of Java is simple,
speed. It is the same reason authors in the future will
continue to use ActionScript and Flash instead of an
HTML5 Canvas and JavaScript. While Java boasts of
performance and speed improvements, it simply won’t
suffice the challenges interactive video requires. In the
grand scheme of things when one considers all of the
issues, touch screens are really not an issue, now are
they?

Useful Links:
• Steve Jobs’ letter – http://www.apple.com/hotnews/

thoughts-on-�ash/
• The HTML5 Speci�cation Draft at W3C – http://

dev.w3.org/html5/spec/Overview.html
• Chris Teso’s ActionScript Demo – http://

www.christeso.com/blog/index.php/lab/minority-report-
actionscript-webcam-interface/

• Current demos of HTML5 – http://html5demos.com/

JOHN MARX
John Marx is General Manager of Dayspring Systems and
Webspinner.com

editor of the HTML5 draft specification. Ian’s paycheck
comes from advertising as well. His employer, Google
Inc. is on track to earn as much as $28 billion in revenue
this year and some report as much as 99% of it will
be from advertising revenues. Forget search engines
and web browsers, Google has shown all of us that the
future of the Internet will be the same as television’s
past. It will be determined by commercials and sponsors
not developers and authors. Kind of makes me feel very
insignificant as I write mxml every day for my seemingly
oh-so-small clients, huh?

But before we fold up our netbooks and head to the
remote islands of Fiji we all should take pause and
consider what this means to anyone with programming
experience. And by programming I don’t mean the
producers of the next NCIS episode. The question
we must ask is if Google derives its revenue from
advertising, and Apple is headed in the same direction,
what do these vendors reveal to us through their
acquisitions and new initiatives and business models?
Consider that while some of Google’s acquisitions
are companies such as AdMob, Teracent and Invite
Media, all online advertising companies, other
companies purchased include technology acquisitions
such as On2, the owners of the VP8 video codec and
Metaweb and PlinkArt, innovators in search engine
technologies.

If we consider where Google spends its time
and money we can grasp what the most influential
technology company in the world thinks we should be
doing as we develop our measly applications from one
day to another. And no I don’t mean world domination!
Before Antennagate Apple’s market capitalization
exceeded Microsoft’s for a few weeks. And while these
now decades old companies are valued in excess of
$200 billion by their shareholders, consider that Google
is not far behind at a value of over $150 billion. Google
is more influential because they are more pervasive and
have gained their dominance in a shorter period of time.
Remember that Google started in 1998 and went public
in 2004, two years after Spielberg’s film.

And what does Google say about Flash? They ride the
fence. Their Android OS now found on vendor’s smart
phones everywhere supports both Flash and HTML5.
Their YouTube site plays H.264, as well as Flash Video

http://www.apple.com/hotnews/
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/spec/Overview.html
http://www.christeso.com/blog/index.php/lab/minority-report-actionscript-webcam-interface/
http://www.christeso.com/blog/index.php/lab/minority-report-actionscript-webcam-interface/
http://www.christeso.com/blog/index.php/lab/minority-report-actionscript-webcam-interface/
http://www.christeso.com/blog/index.php/lab/minority-report-actionscript-webcam-interface/
http://html5demos.com/

12

IN BRIEF

06/2010 (14)

More Adobe Open Source with SourceForge
Duane „Chaos” Nickull got an email from Dave McAllister, and I’ve
selected some paragraphs from it: Today, we formally launched phase
1 of open@adobe, our new portal for open stuff. Open@Adobe (http://
sourceforge.net/adobe) is the first instantiation of SourceForge’s new
developer platform. Open@Adobe is a site aggregating Adobe’s openness
programs, which includes source code hosting, such as the Adobe® Flex
framework, and contributions from Adobe to standards organizations, as
well as specifications.

It has been clear for some time that we needed to become more aligned
with development principles is seen in open source projects. We’ve always
followed an open process model, with exposure to our bug bases, open
discussion forums, roadmaps for products, and early access through Adobe
Labs. However, our current repository was not meeting the desire to allow
our projects to evolve in multiple directions simultaneously.

In short, Source Forge was beginning to redesign their forge. Because of
this we had the chance to add our requests, such as the ability to link back
to existing Adobe properties (like forums) and in the future, adding the ability
to unify the bugbase to our engineering teams. We worked with a number
of existing projects to get their input, and it was fascinating the input we did
get.

We wanted to tap the creative and innovative energies of the open
source community. SF today hosts over 250K projects and has around
3M downloads a day. We’ve seen some increase in our numbers since
its been up, even though it wasn’t announced to today. We wanted the
ability for groups and individuals to self create projects; and in the near
future to recognize the existence of projects built on our open source core
technologies. There are planned updates during the next year, and the
various projects will move from opensource.adobe.com to open@adobe as
it makes sense.

from: Adobe Flash Platform Blog

Flash Builder for Force.com
Available
The new offering integrates the
Flash Platform with Force.com
(from salesforce.com) to bring the
richness of the consumer Web to
enterprise cloud applications. This
jointly developed IDE provides a
single, powerful tool for building
cloud-based RIAs, which can easily
be deployed to end users through
the browser using Adobe Flash Player
or directly to the desktop via Adobe
AIR. Developers can use Adobe Flash
Builder for Force.com to extend or
enhance existing salesforce CRM
implementations and custom-built
Force.com applications, or build
entirely new applications to meet any
demanding business need.

Source: Adobe Flash Platform Blog

Monetize your AIR applications
with Melrose
Melrose – the monetization service
previously known as Shibuya – is now
live on Adobe Labs.

With just a couple lines of code you
can add a complete license manager
and payment solution to your AIR
application. You can even create time
and feature based trials.

Melrose works exactly like all the
other application stores out there.
Adobe don’t charge any monthly or
yearly fees but do take a percentage
of your earnings (obviously there is no
charge for free apps). In return they’ll
provide a safe and secure way to
monetize your AIR applications. That
means you don’t have to worry about
things like credit card processing
and hosting your license manager
logic. Your private dashboard will tell
you how your application is doing.
You can view charts on number of
downloads of your apps, number of
trials, number of purchases, revenue,
number of activations, and trial to
purchase histogram (i.e. conversions
from trials to purchases).

Developers and publishers in 47
countries can use Melrose to distribute
and monetize AIR applications.

Source: Serge Jespers

Flerry 1.1.2 released
Flerry is a Flex-Java bridge for Adobe
AIR 2.0, is now at version 1.1.2. It is
only a bug�x release.

Source: Adobe Flash Platform Blog

News selected by Gábor Csomák

Cell Your Game Contest
GameLicense.com Present: Cell Your Game Contest Maybe you’ve heard
the news: the newest Android mobile OS fully supports Flash. Guess what
that means? Now’s the time to break into a brand new market for Flash
games! Adobe and FlashGameLicense.com are proud to host a very
special contest exclusively for members of FGL. Create or port a game for
mobile Flash platforms and you could win fabulous prizes – not to mention
open a whole new world of players and profit. There are over $30,000 in
cash and prizes and 150 games will win at least $100. Go on, check it out!
FGL has also created a new forum full of guides, FAQs, and support to
help you take advantage of this new frontier. Adobe is providing them with
the latest guidelines, APIs, and tools, and FGL will make them available
to you there.

from: http://www.flashgamelicense.com/sponsor_pages/adobe/

http://sourceforge.net/adobe
http://sourceforge.net/adobe
news:the
http://www.flashgamelicense.com/sponsor_pages/adobe/

http://www.exsys.com

06/2010 (14)14

TOOLS SourceMate: An ActionScripter’s Toolbox

06/2010 (14) 15

SourceMate is a plug-in for the Eclipse
environment whether you are using Flash Builder
or the Flex plug-in for Eclipse. Installation is

easy using the Install new software... command within
the environments and you can be up and running with
SourceMate very quickly.

The program adds a menu-item to your Flash Builder
install that gives a wide variety of assistants to code
writing. It also adds options to the code assistant pop-
up that can be used while coding. These options include
refactoring, event generation, code extraction and code
templates among other features.

Using these added features surpass Flash Builder’s
built in functions and make coding faster and easier.
Whether your code uses basic OOP patterns on a small
project or larger enterprise projects that follow strict
designs, SourceMate can help make the process easier.

Code generation
What I like most about SourceMate and use the most
is the code generation capabilities. Code can be
generated on the fly from either the code assist pop up
or the template view from within the program. Most of the
redundant tasks such as for loops, function generation
and event handlers can be created with ease.

Code generation is not a bunch of text that has been
pasted in from an external template. It is live type and allows
you to continue to work with the functions without having to
move the cursor to the position where you want to edit.

For example, the event handler template starts by
typing in the addEventListener command followed by the
first parameter for the event type. After typing the comma
to separate the parameters, bring up the code assist
pop up (Command or Control Space). The first option
will be Generate Event Handler. Selecting this option
will complete the line with a generic function name and
create an event handler function with the same name.

Now this is where SourceMate makes coding life
easier for the user. The generated handler name will
be highlighted, so to change the name of the function,
just start typing. Not only will the name of the handler
function change in the addEventListener line, but also in
the generated function itself.

But there is more! After typing the name of the handler
function, hit the tab key and the parameter type of the
function is highlighted so you can change it. Once that
is changed, hit tab again and you will be in the function
body ready to start typing in the behaviours of the event.
All without having to type out the basic frame work of the
function. It is also possible to use code generation on plenty
of pre-built templates such as for loops that are hooked to
arrays, forin loops that are added to dynamic objects and
constants with the same functionality and ease of use.

It is also possible to create new snippets and templates
customised to your individual needs. If I find that I am
checking for the same variable a lot, I will create a snippet
that generates an if statement. It save me only a few
seconds, but those seconds quickly adds up.

Custom snippets can also be shared with other users.
This makes a good template system for a group of
developers to keep their code consistent. Templates
can also be created for custom libraries that may not
have snippets already created for them.

Refactoring
If you are like me, you often code out your ideas. When
those ideas end up working out, you want to use them
in the actual project. The problem is that there is a lot
of unnecessary repeated code that can be turned into
a single function. Tracking down all of these variable
and function names can be difficult, especially when
there are multiple classes in the project.

This is where refactoring comes in and SourceMate
is a definite improvement over the native Flash Builder

SourceMate:
An ActionScripter’s Toolbox
I first learned about SourceMate by ElementRiver
(http://www.elementriver.com/sourcemate) during
a presentation of Flash Builder 4 at our local Flash Users
group. The presentation was put on by Lee Brimelow
and he said it was a must-have tool to go with Flash Builder. I immediately
looked into the tool and found it invaluable to every day coding situations.

http://www.elementriver.com/sourcemate

06/2010 (14)14

TOOLS SourceMate: An ActionScripter’s Toolbox

06/2010 (14) 15

the other features just keep adding to experience. Features
such as ASDoc generation, TODO markers and ANT build
file generation adds a lot of power to Flash Builder and
makes tasks that were once tedious a lot easier.

An extra feature that I particularly like is the Metadata
Content Assistant. When there is a lot of external
resources to embed in a project, the [Embed] tag can be
a pain to implement repeatedly. By typing the opening
bracket, the content assistant will open and allow you
to choose a metadata tag, which will then insert the tag
and its parameters.

Trace statements are usually sprinkled throughout
a project’s code and used for debugging purposes. When
a project needs to be presented but is not necessarily
finished, you don’t want to show the trace statements but
don’t want to remove them either. The Disable All trace()
Statements will search through your code and comment
out the traces. To make the traces available again, select
Enable All trace() Statements to turn them back on.

Conclusion
Once you install SourceMate and add it to your toolbox,
you will wonder how you have lived without it. There are
so many features that will fit so many different coding
styles, almost everyone can find it useful.

Flash Builder is a powerful project but many
developers who come from a programming background
find some of the common features that are available in
other IDEs missing. SourceMate works to replace and
enhance those features. Every feature it adds is well
thought our and works efficiently to get the task done.

A lot of tools that are available as add-ons to Flash
Builder also seem to be geared toward the enterprise
level projects and the more advanced user. What I really
like about SourceMate is that you do not have to be an
advanced user to use it. There may be some features
that a user may not use, but it is still a worthy investment
regardless of skill level. Getting up to speed with the
product is quick and painless. There are not a lot of
archaic commands that need to be learned before the
program can be used effectively. Simply install it and you
should be able to use the code generation right from the
start. But it is also not restrictive in how it is used.

Ultimately, I agree with Lee. SourceMate is worth
the investment and needs to be in your programming
toolbox. It is very affordable and easy to use which will
save you a lot of time in building your projects. It will
also allow developers to concentrate on creative coding
instead of redundant tasks.

implementations. SourceMate can take highlighted
code and create new methods, constants from values
and interfaces from classes. The process is simple,
straightforward and, most importantly, allows you to
preview the changes to implement them.

If there are several lines of code that you find have
been repeated throughout the class, you can turn these
into a function by highlighting one of the blocks and
selecting Extract Method... from the menu. A window
will pop up and allow you to name the function. It will
also look at what variables are being used in the lines of
code and set those as parameters for the functions.

Most importantly, there is a preview button included in
the window. Clicking on this button will show the original
code next to the proposed changes in a diff style format.
This allows review of the changes before they are
applied. One problem I found using the Extract Method
command is that it will allow multiple functions with the
same name to be generated. This is easily avoidable if
you use the preview command before committing the
changes, but it is something to be conscious of.

Other useful tools include Constant extraction and
generation, which allows you to convert a hard value
to a constant. SourceMate will find all instances of
that value and convert it to the new constant. Extract
Interface allows a class to be converted to an interface
class. The command will allow you to select which
methods will be part of the interface and make the
original class implement the new interface.

And much, much more...
There are a lot of user friendly features in SourceMate that
will really help you get your projects done faster. While the
code generation features alone make it worth installing, all

Figure 1. The SourceMate menu in Flash Builder

LOUIS DICARRO
Louis DiCarro is a consultant based in NYC and has been working
with Flash since the �rst version. He has taught web development
at the college level and has worked for numerous large clients.
He can be reached at louis.dicarro.ffd@gmail.com.

mailto:louis.dicarro.ffd@gmail.com

06/2010 (14)16

TOOLS ENTITY – Data Interchange Evolved

06/2010 (14) 17

ENTITY is a lightweight data-interchange format.
That is easy and fast for machines to parse and
generate. It is based on conventions used in

programming languages like LISP, JAVA, and C.

ENTITY is a text based format that is completely
language independent, making it a robust and versatile
data-interchange format. ENTITY is smaller in size and
faster to parse/generate than both XML and JSON. It

ENTITY

Finding the parent of a Flex 3 control is easy, but the
parentage of a Flex 4 control is harder to pin down. In this
article we look at some ways of tracking down the visible
parents of Spark components.

Data Interchange Evolved

Listing 1. list’s a simple FLEX program that take’s a FLEX object and serializes it into entity text

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/

mxml" layout="absolute" creationC

omplete="init();">

 <mx:Script>

 <![CDATA[

 import entity.*;

 import mx.controls.Alert;

 private function init():void

 {

 var eObj:Object = new Object();

 var entArr:Array = new Array();

 /*

 Build up a simple object.

 */

 for(var loop:int = 0; loop < 10; loop++)

 {

 var currObj:Object = new Object();

 currObj.name = "name " + loop.toString();

 currObj.value = loop.toString();

 entArr.push(currObj);

 }

 eObj.description = "a simple encoding test";

 eObj.array = entArr;

 /*

 Encode the object into ENTITY.

 */

 var entStr:String = Entity.encode(eObj);

 }

]]>

 </mx:Script>

</mx:Application>

Listing 2. Shows the encoded data that should be stored in the
entStr variable after execution of the program in Listing 1

(

 description:a simple encoding test,

 array:[

 (name:name 0,value:0),

 (name:name 1,value:1),

 (name:name 2,value:2),

 (name:name 3,value:3),

 (name:name 4,value:4),

 (name:name 5,value:5),

 (name:name 6,value:6),

 (name:name 7,value:7),

 (name:name 8,value:8),

 (name:name 9,value:9)

]

)

http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml

06/2010 (14)16

TOOLS ENTITY – Data Interchange Evolved

06/2010 (14) 17

Tell Me More
ENTITY can represent four primitive types (Strings,
Numbers, Booleans, & NULL) and two structured types
(Objects, & Arrays) both of which can be found in most
modern programming languages in some shape or
form.

All of the official ENTITY encoders/decoders can
digest JSON text streams, making it easy to incorporate
ENTITY into existing systems.

It is fair to say that ENTITY is a young data
interchange format, but it is going from strength to
strength. At the time of writing this article ENTITY was
only two weeks old and is already available on FLEX,
C-SHARP, JAVA and VISUAL BASIC. There are many
more official and third party Open Source ports on the
way.

represents exactly the same data as XML and JSON with
fewer characters. The official entity libraries are free for
non-profit use. The specification is open for all to use in
the development of their own ENTITY encoders/decoders.
I would encourage anyone creating their own parser to
send me an email so that I can list it on the entity website
at http://www.entity-format.co.uk for others to use.

Why Use Entity?
Entity is smaller than both XML and JSON and the author
of the ENTITY format also wrote the world’s fastest JSON
PARSER JSwoof. ENTITY was actually created because
I believed that the capability limits of the JSON format
had been reached. It was time to stop creating optimized
code to speed up the format and look at creating a new
format conceived to be small and fast.

Listing 3. Lists a simple program that takes some entity text and decodes it into a native FLEX object

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/

mxml" layout="absolute" creationC

omplete="init();">

 <mx:Script>

 <![CDATA[

 import entity.*;

 import mx.controls.Alert;

 private function init():void

 {

 var simpleENTITY:String = "(name:

wayne,value:#1000.0)";

 var eObj:Object = Entity.decode(simpleENTI

TY);

 }

]]>

 </mx:Script>

</mx:Application>

Listing 4. Shows the encoded data from ENTITY and JSON for
a single customer record. As can be seen ENTITY is much smaller
whilst still representing the exact same data as JSON

 ENTITY Format (295 Characters)

 (

 firstName:John,

 lastName:Smith,

 age: #25,

 blocked: ?f,

 address:

 (

 streetAddress:21 2nd Street,

 city:New York,

 state:NY,

 postalCode:10021

),

 phoneNumber:

 [

 (type:home, number:212 555-1234),

 (type:fax, number:646 555-4567)

]

)

 JSON Format (359 Characters)

 {

 "firstName": "John",

 "lastName": "Smith",

 "age": 25,

 "blocked": false,

 "address":

 {

 "streetAddress": "21 2nd Street",

 "city": "New York",

 "state": "NY",

 "postalCode": "10021"

 },

 "phoneNumber":

 [

 { "type": "home", "number": "212 555-

1234" },

 { "type": "fax", "number": "646 555-

4567" }

]

 }

http://www.entity-format.co.uk
http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml

06/2010 (14)18

TOOLS

The Entity Library
The library is made up of eight classes EERROR.AS (Error
Handling Functions), ESERIALIZE.AS (Object Serialization
Functions), ETOKEN.AS (ENTITY Token Types), JTOKEN.AS
(JSON Token Types), ETOKENIZER.AS (ENTITY Tokenizing
Functions), JTOKENIZER.AS (JSON Tokenizing Functions)
EMISC.AS (Miscellaneous Functions), and ENTITY.AS
(Decoding And Encoding Functions). You can find full
documentation of the ENTITY library on the ENTITY
website. http://www.entity-format.co.uk

Creating Our First Entity Text Stream
Ok, we know what the entity format is all about. So let’s
create our first entity text stream see (Listing 1 and
Listing 2).

Ok so we can encode entity. All we
need to know now is how to decode
the data we have created see (Listing
3).

Simple isn’t it. There are three
functions that are publically available
in the ENTITY class that you will need
for the encoding and decoding of
data they are: decode(), encode(), and
decodeJSON()

Making The Switch
Ok so you already use JSON. Why
should you bother switching to
ENTITY? Well, it is often said A picture
is worth a thousand words’. So is
some example output data from both
formats see (Listing 4).

Porting
Ok, so you have some existing JSON
data you would like to convert to
ENTITY. If you are using one of the
official ENTITY libraries this can be
done with a single call. Convert’s it
into a FLEX object, and then encodes
it into ENTITY.

It really is that simple; to start
shrinking the data you pass around
your applications and services.

Over And Out
You will see ENTITY available on
a lot more platforms over the coming
months. And you will can always be
sure to find the latest versions of
ENTITY at www.entity-format.co.uk

For the latest ENTITY news
please follow the project on Twitter:
http://twitter.com/entity_format

WAYNE IV MIKE
The author has worked in the games industry since
1999, initially programming for the GAMEBOY Color and
PLAYSTATION one. He currently works for one of Britain’s
biggest regional newspapers as an application programmer,
using C, C++, PHP and FLEX.
Wayne’s spare time is spent writing open source applications
and graphical demonstrations, designed to push PC hardware
to the limit.
You can contact Wayne directly via email: wayne@entity-
format.co.uk

Listing 5. List’s a simple program that takes JSON data

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute" creationComplete="init();">

 <mx:Script>

 <![CDATA[

 import entity.*;

 import mx.controls.Alert;

 import mx.core.ByteArrayAsset;

 [Embed(source='../html-template/example.json',mimeType='applicat

ion/octet-

 stream')] [Bindable] public static var jsonTextClass:

Class;

 private function init():void

 {

 var jsonByteArray:ByteArrayAsset = ByteArrayAsset(new

jsonTextClass());

 var jsonText:String = jsonByteArray.readUTFBytes(jsonByteArr

ay.length);

 var jObj:* = Entity.decodeJSON(jsonText); //decode JSON

text.

 if(jObj != null)

 {

 var entityStr:String = Entity.encode(jObj); //encode

object into ENTITY.

 Result.text = "ENTITY:\n" + entityStr + "\n\n";

 Result.text += "JSON:\n" + jsonText;

 }

 }

]]>

 </mx:Script>

 <mx:TextArea right="10" left="10" top="10" bottom="10" id="Result"

editable="false"/>

</mx:Application>

http://www.adobe.com/2006/mxml
http://www.entity-format.co.uk
http://www.entity-format.co.uk
http://twitter.com/entity_format
mailto:wayne@entity-format.co.uk
mailto:wayne@entity-format.co.uk
mailto:wayne@entity-format.co.uk

http://www.kindisoft.com

06/2010 (14)20

LIVECYCLE Setting up model-driven development with LiveCycle Data Services ES2

06/2010 (14) 21

The advanced Message Exchange Patterns
(MEPs) it enables are unparalleled and very
robust.

This article is aimed at developers and distills
the essential steps needed to set up model-driven
development with LiveCycle Data Services ES2 and
Flash Builder 4 beta 2.

In this tutorial, we'll share these steps to help you
get started quickly and walk through building a simple
application using a new technology that brings model-
driven development to Flex developers.

Note
You may have heard this technology referred to as Fiber
(also sometimes spelled Fibre). This was the internal
project name and the technology is now available for
public download.

Requirements
In order to make the most of this article, you need the
following software and files:

Flash Builder 4 beta 2

• Download
 (ht tp : / /w w w.adobe.com /go / f lashbu i lder4 _

download)
• Learn more
 (http://www.adobe.com/go/flashbuilder4)

LiveCycle Data Services ES2

• Try (http://www.adobe.com/go/trylivecycle_data-
services)

• Learn more (http://www.adobe.com/products/live-
cycle/dataservices/)

Prerequisite knowledge
Some experience developing Flex applications will be
helpful.

Setting up the environment
Here are the steps you need to get started developing in
Flash Builder 4 using the modeler plug-in.

Download LiveCycle Data Services ES2 and install
it using the standalone LiveCycle Data Services With
Tomcat option.

Note
Selecting LiveCycle Data Services Web Application to use
your own application server is slightly more complicated;
the standalone option makes it easier to get started
quickly. Download the modeler plug-in and unzip it (http:
//trials.adobe.com/pub/esd/labs/livecycle_dataservices3/
livecycle_dataservices3_modelerplugin_100509.zip).

Note
Build 100509 of the modeler plug-in is for Flash Builder
4 beta 2. There are dependencies between the plug-in
and the IDE, and not all builds of the plug-in will work
with all versions of Flash Builder 4.

After you unpack the ZIP file, copy all the files from
its plugins folder into your <Flash_Builder_Home>/plugins
directory.

Navigate to your <LCDS_INSTALL ROOT>/tomcat/webapps/

lcds/WEB-INF/ directory and open web.xml with a text
editor; for example, textEdit.app (Mac OS X) or Notepad
(Windows).

Locate the section of code below (it begins around
line 26): see (Listing 1).

To uncomment this code, change the first line from <!-
- begin rds to <!-- begin rds --> and change the last line
from end rds --> to <!-- end rds -->.

Setting up model-driven

LiveCycle Data Services ES2 is an important component for
many companies migrating to a three-tier architecture for
enterprise RIA development.

development with LiveCycle Data Services ES2

http://www.adobe.com/go/flashbuilder4
http://www.adobe.com/go/trylivecycle_data-services
http://www.adobe.com/go/trylivecycle_data-services
http://www.adobe.com/products/live-cycle/dataservices/
http://www.adobe.com/products/live-cycle/dataservices/
http://www.adobe.com/products/live-cycle/dataservices/

06/2010 (14)20

LIVECYCLE Setting up model-driven development with LiveCycle Data Services ES2

06/2010 (14) 21

components you will need to start up: a sample
database and the server itself.

To start the database (an HSQLDB instance), open
a terminal/command window, navigate to <LCDS_INSTALL

Change the useAppserverSecurity value from true
to false. The code should now look like this: see
(Listing 2).

This change removes application server security from
RDSDispatchServlet so you can focus on writing code
during development and not security issues. If you do
not make this change, you'll see an error in Flash Builder
4 notifying you that the RDS server was successfully
contacted, but your security credentials were invalid.

Note
When you have finished this tutorial, reset this
parameter to true or disable RDSDispatchServlet to
prevent unwanted access to the servlet, which could
expose destination details on your server.

Save your changes and close the text editor. Now
you're ready to start up the server. There are two

Listing 1.

6 <!-- begin rds

7 <servlet>

8 <servlet-name>RDSDispatchServlet</servlet-

name>

9 <display-name>RDSDispatchServlet</display-

name>

10 <servlet-class>flex.rds.server.servlet.Front

EndServlet</servlet-class>

11 <init-param>

12 <param-name>useAppserverSecurity</

param-name>

13 <param-value>true</param-value>

14 </init-param>

15 <load-on-startup>10</load-on-startup>

16 </servlet>

17

18 <servlet-mapping id="RDS_DISPATCH_MAPPING">

19 <servlet-name>RDSDispatchServlet</servlet-

name>

20 <url-pattern>/CFIDE/main/ide.cfm</url-

pattern>

21 </servlet-mapping>

22 end rds -->

Listing 2.

24 <!-- begin rds -->

25 <servlet>

26 <servlet-name>RDSDispatchServlet</

servlet-name>

27 <display-name>RDSDispatchServlet</

display-name>

28 <servlet-class>flex.rds.server.servlet.Fron

tEndServlet</servlet-class>

29 <init-param>

30 <param-name>useAppserverSecurity</

param-name>

31 <param-value>false</param-value>

32 </init-param>

33 <load-on-startup>10</load-on-startup>

34 </servlet>

35

36 <servlet-mapping id="RDS_DISPATCH_MAPPING">

37 <servlet-name>RDSDispatchServlet</servlet-

name>

38 <url-pattern>/CFIDE/main/ide.cfm</url-

pattern>

39 </servlet-mapping>

40 <!-- end rds -->

Figure 2. Creating the new project
Figure 1. Startup information showing the port that the database
is using

06/2010 (14)22

LIVECYCLE Setting up model-driven development with LiveCycle Data Services ES2

06/2010 (14) 23

ROOT>/sampledb, and type sh startdb.sh (Mac OS X and
Linux) or startdb (Windows).

Open a second terminal/command window, navigate
to <LCDS_INSTALL ROOT>/tomcat/bin, and type sh Catalina.sh
run (Mac OS X and Linux) or Catalina run (Windows).

As the server starts up, you will see a line that shows
the port that hsqldb is using. By default it is 9002 (see
Figure 1). You'll use this information to configure the
data source.

Navigate to the folder <LCDS_INSTALL ROOT>/tomcat/conf/
Catalina/localhost and open the lcds.xml file with a text
editor.

Edit the file and add a reference to the data source as
follows: see (Listing 3).

There are two databases that you can use here:
ordersdb and flexdemodb. The code above uses
ordersdb.

Save your changes and close the text editor. You
may need to restart your server for this change to take
effect.

Your environment is now set up and you're ready to
start building your first model-driven Flex application.

Building a model-driven Flex application
Follow these steps to build a simple model-driven Flex
application:

Start Flash Builder 4 and choose File>New>Flex
Project.

Type FiberTest for the Project Name, select J2EE and
LiveCycle Data Services ES as the server technology
(see Figure 2), and click Next.

To configure the J2EE server, make sure the settings
for Root Folder, Root URL, and Context Root are
correct. By default on Mac OS X they are as follows:

Root Folder: <TOMCAT_ROOT_DIRECTORY>/tomcat/webapps/lcds/
Root URL: http://localhost:8400/lcds
Context Root: lcds/ (Mac OS X) or /lcds (Windows)
Click Validate Configuration (see Figure 3) to ensure

the root folder and root URL are valid and then click
Finish.

Next, you must configure Remote Data Services
(RDS) to enable the modeler plug-in to access the data
source you just configured.

Choose Window>Preferences.

Listing 3.

45 <Context privileged="true" antiResourceLocking="false" antiJARLocking="false" reloadable="true">

46 <!-- JOTM -->

47 <Transaction factory="org.objectweb.jotm.UserTransactionFactory" jotm.timeout="60"/>

48

49 <Resource name="jdbc/ordersDB" type="javax.sql.DataSource"

50 driverClassName="org.hsqldb.jdbcDriver"

51 maxIdle="2" maxWait="5000"

52 url="jdbc:hsqldb:hsql://localhost:9002/ordersdb"

53 username="sa" password="" maxActive="4"/>

54 </Context>

Figure 3. Con�guring the server Figure 4. Con�guring RDS

hsql://localhost:9002/ordersdb
http://localhost:8400/lcds

06/2010 (14)22

LIVECYCLE Setting up model-driven development with LiveCycle Data Services ES2

06/2010 (14) 23

From the list on the left, select Adobe and then RDS
Configuration.

Click New.
For the Description type LCDS (localhost); for Host

Name type 127.0.0.1; for Port type 8400; and for
Context Root type lcds.

Leave the User Name and Password blank and click
Test Connection to verify your settings (see Figure 4).

Click OK.
Choose Window>Other Views, expand the Data

Model folder, and select RDS Dataview (see Figure 5).
If you want, you can drag the RDS Dataview panel to

the lower left hand side of Flash Builder 4.
At this point, you should be able to expand

LCDS (localhost) in the RDS Dataview panel and
examine any of the database tables (see Figure

6). If you cannot connect to the server, right-click
(or Control-Click) on LCDS (localhost), select RDS
Configuration, and check your configuration settings.
Common causes include security credentials (see the
instructions on changing the useAppserverSecurity value
in Setting up the environment http://www.adobe.com/
devnet/livecycle/articles/lcdses2_mdd_quickstart_
02.html) and a lack of data source mapping (see
the instructions on adding a data source reference
to lcds.xml in Setting up the environment http://
www.adobe.com/devnet/livecycle/articles/lcdses2_
mdd_quickstart_02.html).

To create a new FML file, switch to the Data/Services
view and click the Edit Active Data Model button in the
upper right (see Figure 7).

When the model editor opens, note that it supports
Design view and Code view like other Flash Builder 4
editors.

Note: The modeler plug-in stores data for the Design
View layout in the FML file.

Drag the PUBLIC.PRODUCT table from the RDS
Dataview panel to the Design view area of the FML file
(see Figure 8).

To deploy the active model to the server, click the
Deploy Model to LCDS Server button (see Figure 9).

Note
You can use this same procedure to redeploy your model
to the server if you later make changes to the model.

In the Deploy Data Model dialog box, type FiberTest
(or use whatever name you gave your project), select
Overwrite Existing Model, and Create/Recreate (see
Figure 10). Click Finish.

Open.
FiberTest.mxml in Design view and drag a DataGrid

component onto the Design area.
Click the Data/Services panel. If it is not visible,

choose Window>Data/Services.

Figure 5. Opening the RDS Dataview view

Figure 6. Database tables shown in the RDS Dataview panel

Figure 7. The Edit Active Data Model button

Figure 8. The PUBLIC.PRODUCT table in Design view

http://www.adobe.com/
http://www.adobe.com/devnet/livecycle/articles/lcdses2_
http://www.adobe.com/devnet/livecycle/articles/lcdses2_

06/2010 (14)24

LIVECYCLE Setting up model-driven development with LiveCycle Data Services ES2

06/2010 (14) 25

In the Data/Services panel, expand ProductService
and then drag the getAll() method onto the DataGrid
component in Design view (see Figure 11).

For each model deployed on the server, LiveCycle
Data Services and Flash Builder 4 will generate methods
that you can use to perform basic operations on the
table represented by the model. The basic operations
enable you to get all records (getAll), create a record
(createProduct), update a record (updateProduct), and delete
a record (deleteProduct). Apart from these methods, there
are methods that you can use to filter records based on
a value in a column of the table; in this case they are
getByProductname and getByPrice, for example. You can also
add custom methods to perform your own queries, but
that is outside the scope of this article.

The DataGrid column headers will change to reflect
the data returned by the call to the service. A link
icon appears, indicating that the data is bound to the
component.

Choose Run>Run FiberTest to run your project.
It should fetch data from the server and display it in

the DataGrid component (see Figure 12).

Adding create,
read, update, and delete operations
Of course, as a developer, you want more than just
a simple display application. You're ready to add a form
to enable CRUD capabilities.

Right-click (Windows) or Control-Click (Mac OS X)
the getAll() method in the Data/Services tab and select
Generate Form.

In the Choose Form Type dialog box, click Model
Driven Form and click OK (see Figure 13).

After the form is generated, move it below the
DataGrid component in Design view.

Save your project and run the application again.
Within the application, click Add and type some sample

input in the Description, Price, and Productname fields
(see Figure 14).

Click Save to update the database.
If you want, you can quit the application and rerun it to

verify that the product you just added really was stored
in the database.

Note
If you enter a non-integer price, you will notice that
the price read back from the database is not exactly
the same as what you entered. For example, I added
a product priced at 7.3, and the price stored in the
database was 7.300000190734. To understand why,
examine the Price field in the RDS Dataview panel; it
is defined as a FLOAT17, whereas in the actual form
the price is defined as a Number. When you specify
a price, save it to the database, and reload it, you are
loading the FLOAT17 version of the data. This problem
can be remedied fairly easily, but enumerating the steps
is beyond the scope of this article. Now that you know
you can create a new record, you can make a few more
changes to enable update and delete functionality as
well.

Figure 9. The Deploy Model to LCDS Server button

Figure 10. Deploying the data model to LiveCycle Data Services ES2

Figure 11. Binding the getAll() method to the DataGrid component

Figure 12. Live data in the DataGrid component

06/2010 (14)24

LIVECYCLE Setting up model-driven development with LiveCycle Data Services ES2

06/2010 (14) 25

Open FiberTest.xml in Source view and locate the
following line (it should be near line 33):

<forms:ProductForm id="ProductForm1"

valueObject="{Product}" x="159" y="233">

Edit the line so it reads as follows (your x and y values
may differ from those shown):

<forms:ProductForm id="ProductForm1"

valueObject="{dataGrid.selectedItem as Product}" x="159"

y="233">

This change will enable you to delete records and to
make changes in the form and have them reflected
in the data grid. The change is necessary because
you generated the form from the data model, not
from the data grid itself. As a result, the form was not
automatically bound to the selected item of the data
grid.

Switch to Design view and select the data grid.
In the Properties panel, set the DataGrid component's

editable property to true.
This will enable you to edit data directly in the data

grid, without using the form.
Save your project and run the application again.

Now when you select an item from the data grid, it will
appear for editing in the form. Alternatively, you can edit
data directly in the data grid. Any changes you make
will be committed to the database when you click Save.
Also, when an item is selected you can click Delete to
remove it from the database.

Where to go from here
That's it. You've built your first model-driven Flex
application and added basic CRUD functionality with
a bare minimum of coding.

For additional reading, see Model-driven Applications
in Using LiveCycle Data Services. To access the
LiveCycle Data Services ES Test Drive, use your
browser to open http://localhost:8400/lcds-samples/
testdrive.htm.

Have fun unlocking the power of LiveCycle
Data Services ES2 (http://help.adobe.com/en_
US/LiveCycleDataServicesES/3.0/Developing/
WS31EA2385-DC66-4ecf-B256-B9BC65406ED4.html)
and Flash Builder 4.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported
License (http://creativecommons.org/licenses/by-nc-
sa/3.0/)

Figure 13. Choosing a model driven form

Figure 14. Adding a new product

SUJIT REDDY G
Sujit Reddy G is a Technical Evangelist for Flex at Adobe. He
brings with him a great deal of expertise in Flex, J2EE and PHP.
He specializes in building enterprise applications on Adobe
Flash Platform and has a blog focusing on the integration of
Adobe Flex with Adobe LiveCycle Data Services (and BlazeDS)
at http://sujitreddyg.wordpress.com.

DUANE NICKULL
Duane Nickull, a senior technical evangelist at Adobe, is re-
sponsible for Adobe's messaging around enterprise solutions
in the SOA and web services spaces plus other forward-lo-
oking aspects, such as Web 2.0. Previously Duane cofounded
Yellow Dragon Software Corporation, a privately held deve-
loper of XML messaging and metadata management softwa-
re, acquired by Adobe in 2003. He also served as CTO and Pre-
sident of XML Global Technologies, which was acquired by Xe-
nos Group in early 2003. Visit Duane's blog.

MICHAEL PETERSON
Michael Peterson is a senior technical writer on the LiveCycle
Data Services team.

http://localhost:8400/lcds-samples/
http://help.adobe.com/en_US/LiveCycleDataServicesES/3.0/Developing/WS31EA2385-DC66-4ecf-B256-B9BC65406ED4.html
http://help.adobe.com/en_US/LiveCycleDataServicesES/3.0/Developing/WS31EA2385-DC66-4ecf-B256-B9BC65406ED4.html
http://help.adobe.com/en_US/LiveCycleDataServicesES/3.0/Developing/WS31EA2385-DC66-4ecf-B256-B9BC65406ED4.html
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://sujitreddyg.wordpress.com

06/2010 (14)26

GAMES The right SmartfoxServer protocol for multiplayer games

06/2010 (14) 27

Online Flash games are quite common
nowadays. It is easy for any player to find
a specialized portal featuring several titles

varying from single player to multiplayer gameplay.
Both mechanics can be equally fun but I think the
multiplayer one can give you hours of endless
challenge and surprises. Beating a real opponent
who is able to think the way you do is very rewarding
and can be as challenging as the skills and strategies
of the players involved. In order to create this type of
entertainment, you must code a game which is able
to communicate over some form of computer network.
There are several multiplayer servers available
out there, each one with different architecture and
communication protocols.

SmartfoxServer
SmartfoxServer is a very powerful and flexible
multiplayer server. It is written in Java, is simple
to use and has a rich set of features, including
a complete documentation and an active community.
The server provides the developer with different tools
to design and code a multiplayer game. One of them
is the ability to create extensions which are server
side code that extend the existing functionalities
allowing the creation of new features and behaviors.
You can create a custom extension to handle all your
multiplayer game traffic so you can tweak it to the
bones in order to produce a very specific and fast

communication. It may reduce the network latency,
but you still need to choose the best way to serialize
the information before it can travel from one client to
another.

Protocols
SmartfoxServer gives you three different protocols to
serialize and send/receive information: XML, JSON and
String-based (aka raw protocol).

The XML protocol is the default option used by
SmartfoxServer and it allows the serialization of
complex objects with any level of nested properties.
Even though it is tempting to simply serialize a whole
object and send it over the network, you must bare in
mind it is extremely expensive.

The XML protocol adds a lot of extra information to
the message in order to tell the server how to handle
the data. For an application where messages are
exchanged less often, it is not a big deal, but for real-
time games it is unacceptable and will cause several
network latency problems. If you can afford to choose

The right SmartfoxServer protocol

SmartfoxServer is a popular tool to create multiplayer
games. It has different communication protocols that you
can use to exchange messages between the clients. In this
article you will learn about each of those protocols and see
how they perform in a real situation.

What you will learn…
• The SmartfoxServer communication protocols
• The amount of extra information that is added to each exchan-

ged message
• Which protocol produces smaller and faster messages.

What you should know…
• You need a basic understanding of network communication
• Some familiarity with multiplayer games or applications able

to communicate using a network

for multiplayer games

06/2010 (14)26

GAMES The right SmartfoxServer protocol for multiplayer games

06/2010 (14) 27

Those bytes are extra information added by the server
API to allow the serialization of complex objects. They
represent 75% of the message content. On the other
hand the JSON messages (exchanged via extensions)
had a total size of 90 bytes. Excluding the game
content there are 62 bytes remaining, all of them being
Smartfox extra information. It represents almost 54% of
the message size.

The raw protocol messages (exchanged via
extensions) had a total size of 46 bytes (18 bytes of
Smartfox information). The majority of the content
was related to the game and only 39% was related to
Smartfox. Even though 18 bytes of extra information
are better than the numbers of the XML and the JSON
protocols, it is a relatively high footprint. You can still
shorten the extension id (a string used by the server
to identify the right extension to handle the message)
and try to tweak the messages even more which can
produce a footprint of 12 bytes. As already explained
the raw protocol produces very small messages which
are better than the ones created by the XML and the
JSON protocols.

Conclusion
SmartfoxServer is a powerful tool to create multiplayer
games, but it will not solve all your network latency
problems. Choosing the right protocol for the right
situation is the key to mitigate the delay between
the clients communication and ensure a The right
SmartfoxServer protocol for multiplayer games.

the protocol for your game you should always avoid the
XML protocol or use it as a last resort.

The JSON protocol is an alternative and much faster
way to serialize and send complex objects. It is based
on JSON, a lightweight data exchange format which
has a native compact structure.

Due to that characteristic the amount of extra
information needed is smaller allowing a compression
factor of 2 to 5 when compared to XML. If you must
serialize complex data types then JSON is a good
choice because it will not overload your messages and
you don’t need to write new code or drastically change
your existing application to take advantage of this
feature. All you need to do is to specify the message
protocol as JSON when you are sending the data and
SmartfoxServer will do all the rest for you.

The String (or raw) protocol is the fastest way to
send data. It is a low level approach that gives you
full control over which bytes to send and which bytes
to strip out. It has little extra information packaged
together with the message, so you must write your
own serialization code if you want to send complex
objects in the same way XML and JSON protocols
do.

When designing a real-time game, every single
byte transmitted counts and can potentially increase
network latency problems, so reducing the amount
of data is the highest priority. Using raw protocol will
ensure your game is sending only what is mandatory
and that the majority of the time between one message
and another will be the result of physical factors such
as network bandwidth, not message overloading
problems.

Some numbers
Now that you know all about SmarfoxServer protocols,
it’s time to see them in action. The following usage
information was collected from a real-time multiplayer
game where two players bounce a ball on the
screen. The data was recorded by intercepting the
SmartfoxServer client API calls that are related to data
transmission, such as the one responsible for writing
the final message in the socket that is open with the
server. The game used a customized serialization code
so the message content could vary in time according
to the object being serialized. In order to avoid this
behavior and allow correct data to be collected, a
constant content of 28 bytes was transmitted in all
messages during the whole game session for all tree
protocols.

The XML protocol was used to package private
messages exchanged between the players. The
messages had a total size of 113 bytes. Since the game
content being transmitted has a constant size of 28
bytes, then 85 bytes were not related to the game itself.

FERNANDO BEVILACQUA
Fernando Bevilacqua is co-founder of Decadium Studios,
a game development company, working with PC and web
games; he is also the creator of As3GameGears.com, a site
specializing in tools for Flash/Flex game developers.
Contact details: dovyski@gmail.com

mailto:dovyski@gmail.com

06/2010 (14)28

GAMES Monetizing Your Web Game Part 1

06/2010 (14) 29

The hope of this series of articles is to shine a light on
many of the monetization methods to choose from
by presenting hard facts based on case studies from

a number of developers as well as statistics we have been
tracking at FlashGameLicense.com and GamerSafe.com.

Part 1: Sponsorship and Licensing
Before I get into the ins and outs of licensing a web
game, let me define some terms:

Sponsorship
A deal made between an entity (the sponsor) and
a developer in which the sponsor pays to have their
branding/ads in one of the developer's games. The terms
Sponsorship and License are used interchangeably in most
cases (and in all cases for the purposes of this article).

Primary License/Sponsorship
A sponsorship where the Sponsor has their branding in
every copy of the game on the web except where the
developer has explicitly sold a Secondary License (defined
below) to another entity. The developer has complete
freedom to remove the primary sponsor's branding and
make any other changes to the game as long as it is
licensed and locked to the other entity's domain.

Non-Exclusive License/Sponsorship
A Sponsorship where the license of the game is not
exclusive to the buyer. The buyer is purchasing one
custom version of the game.

Secondary License
(aka Non-Exclusive Site-Locked License)
A Sponsorship where the license of the game is not
exclusive to the buyer. The buyer is purchasing one custom
version of the game, and this version must be locked to the
buyer’s domain. This is the most common type of non-
exclusive license and it is compatible with the primary
license. The terms non-exclusive license and secondary
license will be used interchangeably in this article.

Performance Bonus
A bonus paid by the Sponsor to the Developer based on
pre-defined performance milestones. Bonus structures
take many forms. A couple of examples are: a lump
sum payout if a game gets a certain number of plays, or
a CPC (cost per click) deal where the Developer is paid
for each unique user sent back to the Sponsor’s site.

There are many more licensing types, but these are
the most popular and most important for this article.
You can find a longer list of licensing types and
terms here: http://www.flashgamelicense.com/view_
library.php?page=license-terms.

At its core, the Primary Sponsorship model is simple:
A Sponsor is interested in getting his or her branding
into a game that will potentially be viewed and played by
millions of people. In most cases, the ultimate goal is to
get those users to click back to the Sponsor’s site via the
links in the game.

So, this is why your game is worth money to sponsors,
but how do you get the most money out of the deal as
possible? The trap many developers fall into is assuming
that their game has a set worth to a sponsor, and that if
the sponsor pays $x for the game, then they must surely
be making more than $x from the game. This isn’t entirely
accurate. Sponsors make money by licensing games
in two main ways. One, is they plan on the long term
funnel of new users a game will bring them. And two,
they sponsor many games in hopes that a handful will be
successful. So, what this means is that they are investing
in your game so that they can make their money back
long term or, if that doesn’t happen, that your payment will
be absorbed by another – more successful – game. Of
course, it is slightly more complex than that in the sense
that they are getting brand association with your game and
other perks like having high quality content for their site,
but when thinking about how to get the most out of a deal
the two main factors of long term earnings and uncertain
returns should be considered the most. In short, if you can
convince a sponsor that your game will have massive,

Monetizing Your Web Game

Currently there are many choices when it comes to monetizing
a web game and it can be daunting for a developer to decide
which model is best for him or her. On top of this, there are
conflicting reports as to which models are truly lucrative.

Part 1

http://www.flashgamelicense.com/view_

06/2010 (14)28

GAMES Monetizing Your Web Game Part 1

06/2010 (14) 29

players like. A Sponsor’s advice can be invaluable. Of
course, you should never feel forced to make changes
you feel will hurt the game, but you should be open to any
suggestions a Sponsor may have.

Once you have accomplished these steps, the real fun
starts. This is the point where you are actually pitching
your game to sponsors. The easiest way to do this is at
FlashGameLicense.com where we have an entire system
built to assist you in this exact situation. The easiest and
fastest way to find out your game’s worth in Sponsors’ eyes
is to get them to bid on your game. Bidding wars often get
heated and in the end the most motivated Sponsor ends up
on top. And who else would you rather have investing in your
game? And once your Primary Sponsorship deal is complete
you can start to sell non-exclusive licenses. This has proven
to be a great secondary source of income for the Developer,
but also a harmless condition for the Sponsor to allow. The
point of a non-exclusive license, for the buyer, is not to drive
traffic but instead to retain traffic and acquire quality content.
Most sites who buy non-exclusive licenses would never take
the distributed version of the game anyway since they do
not allow branding other than their own on their site. What
this means is a sponsor is not losing any traffic, but the
developer is able to resell their game indefinitely. Oftentimes
a sponsor will ask for a short period of time after the Primary
Sponsorship deal is done before you can sell non-exclusive
licenses, however. This is merely an introduction to the
world of sponsorships and licenses with web games, and
is not meant to be all encompassing or definitive. I invite
all readers to visit our site: FlashGameLicense.com to find
out more. FGL is also THE place to buy or sell web games,
so be sure to visit if you are hoping to do either or both. To
summarize what has been covered here:

• Make a great game (or have it nearly finished)
• Don’t release your game!
• Give players an incentive to click to the Sponsor’s site
• Invest in the success of your game (if it is right for you)
• Be open to Sponsor’s suggestions
• Get your game in front of as many Sponsors’ eyes as

possible and have them compete to get you the best deal
• Sell non-exclusive licenses

As a final note I want to stress that the Sponsorship
model and all of the models that will be covered in future
articles in this series are not mutually exclusive of each
other. Developers can, and should, take advantage of
all of them. I am merely presenting them individually as
to make them less confusing to understand. The final
article in this series will cover the best ways to combine
as many of these monetization models as possible to
maximize the revenue generated by your game.

long term, appeal and that their investment is well spent,
you can make more money.

Easier said than done, right? Maybe not. Having a great
game is definitely most of the battle when it comes to
sponsorships, but there is a lot you can add to a game
to increase its worth to a sponsor (as an aside I want to
mention that you should NOT release your game before
you seek a sponsorship. Once a game is released into the
wild it is virtually worthless to a sponsor). The easiest way
to do this is to give players a strong incentive to click back
to a Sponsor’s site. This can be done by adding bonus
content that is only playable on a Sponsor’s site, or linking to
walkthroughs on the Sponsor’s site, or any number of other
things. Take note, however, that you have to be extremely
careful in how you execute, and present, this sort of tactic.
You need to make sure that the game, on any site, is fully
playable and not limited in any way. If players perceive
the game as being nothing more than an advertisement,
or that it is trying to trick them in some way, the game will
undoubtedly be rated down and hidden on sites.

Before I continue I think it is important to point out
something that will be a reoccurring theme in this series. It
is important that you choose a monetization model for your
games that you are comfortable with and that suites you.
There are pros and cons to any path you choose. Some
may have high risk, high reward. Others may be low risk low
reward. Some may provide you with the creative freedom
you desire, but limit you in how you can monetize the game,
and so on. So, with this next bit of advice I caution you to
decide what model you are most comfortable with. Based
on what has been discussed this far, my recommendation
is to strive to invest in the success of your game. This is
usually a little bit more risky, but ultimately it drives everyone
involved to push for the game’s success. The reason it is
more risky is because it usually means you take less up
front in the deal. Here are a few examples of how you can
invest in your game’s success:

• Aim for a performance bonus (preferably based on
CPC to the Sponsor’s site).

• Include links in your game to your own, Developer,
site where you have site ads.

• Aim to include Ads in the game and Microtransactions if
appropriate. Implementing either or both tastefully is key.

Notice that none of these investments harms the sponsor.
In fact, they should increase the value to the Sponsor as
well. Services like GamerSafe and CPMStar have built in
mechanics to share revenue with Sponsors. And since you
make more money by making the game more successful,
the Sponsor is benefiting from a very motivated developer
wanting to make sure the game does as well as it can.

Another great thing about Sponsorships is that you get
to benefit from the Sponsor his/herself. Sponsors want
the game to do well, and in most cases they know what

CHRIS HUGHES
Chris Hughes – FlashGameLicense.com

06/2010 (14)30

ACTIONSCRIPT DEVELOPMENT Using Flash Capabilities in Flex Apps

06/2010 (14) 31

Using Flash Capabilities, we can achieve this and
provide many other interesting functionalities
in our application. In this article, I will show a

sample application where we will apply the possibilities
it opens to you.

Getting Started
Download the sample application at http://
code.google.com/p/flashcapabilities/ and save it in
a folder of your choice. Then open Flex Builder and
import the project file you just downloaded.

The Application UI
The application UI consists of a ComboBox, TextInput,
Button, TextArea for messages and debug info panel

and an ApplicationBar, beside the TitleWindow, etc. see
(Figure 2).

The first thing we will be accomplish is localizing
the user interface on the fly in four languages:
American English and Brazilian Portuguese using fl
ash.system.Capabilities class, if the user run the app in
a system that is not using one of these two languages
by default the Interface will be localized to English
see (Figure 3).

FLASH CAPABILITIES PROPERTIES
flash.system.Capabilities provide properties that
describe the system and player hosting an Application
– the SWF file. Here is the list of some of the properties
this class provides.

Using Flash Capabilities

Being accessible via Internet, our RIA applications must
provide the user with a unique experience. One of the
most common ways to achieve this kind of experience is
localizing the user interface. With flash.system.Capabilities
we will be able to do this and many other interesting things
in the application we develop.

What you will learn…
• Use Flash Capabilities to provide to localize and check system

and runtime information
• Principles of Object Oriented Programming

What you should know…
• Familiar with general programming concepts such as data ty-

pes, variables and functions

in Flex Apps

Figure 1. Import project �le

http://code.google.com/p/flashcapabilities/
http://code.google.com/p/flashcapabilities/

06/2010 (14)30

ACTIONSCRIPT DEVELOPMENT Using Flash Capabilities in Flex Apps

06/2010 (14) 31

Figure 2. Our Application UI Figure 3. App UI localized on the �y

Listing 2. Function that is called when the Application loads

 /**

 * Set event listeners and call the app functions

 */

 public function load():void

 {

 this.btn_send.addEventListener(MouseEvent.CLIC

K, this.sendMessage);

 this.messageText.addEventListener(KeyboardEven

t.KEY_DOWN,this.sendMessage);

 this.messageText.addEventListener(Keybo

ardEvent.KEY_DOWN,this.sendMessage);

 this.checkLanguage();

 this.populateCombo();

 this.showDebugInfo();

 }

//---

Listing 3. Setting the localized texts to be applied in app controls

 /**

 * Check the language of client system

 */

 private function checkLanguage():void

 {

 var language:String = Capabilities.language;

 switch(language)

 {

 case 'pt':

 this.applicationTitle = 'Flash Capabilities

- Aplicativo de Exemplo';

 this.buttonLabel = 'Enviar';

 this.user = 'Vocę';

 this.infoPanel = 'Informaçőes';

 this.comboOptions = new ArrayCollection([{label:

'Fala',data:'0'},

 {label:'Grita',data:'1'},

 {label:'Sussurra',data:'2'}]);

 break;

 case 'en':

 this.applicationTitle = 'Flash

Capabilities - Example App';

 this.buttonLabel = 'Send';

 this.user = 'You';

 this.infoPanel = 'Information';

 this.comboOptions = new ArrayCollection([{label:

'Speaks',data:'0'},

 {label:'Shouts',data:'1'},

 {label:'Wihspers',data:'2'}]);

 break;

 default:

 this.applicationTitle = 'Flash

Capabilities - Example App';

 this.buttonLabel = 'Send';

 this.user = 'You';

 this.infoPanel = 'Information';

 this.comboOptions = new ArrayCollection([{label:

'Speaks',data:'0'},

 {label:'Shouts',data:'1'},

 {label:'Wihspers',data:'2'}]);

 }

 this.localizeApplication();

 }

//--

06/2010 (14)32

ACTIONSCRIPT DEVELOPMENT

• os – current operating system
• playerType – type of the runtime environment
• version – Specifies the Flash Player or Adobe AIR

platform and version information

Localizing the UI
Let's open the CapabilitiesExample.as file inside the logic
folder to check how our user interface was localized.

After importing the required classes to be used by
our app, declare private variables and we will access
and set their values via getters and setters methods/
functions to the corresponding language text and apply
to the UI see (Listing 1).

Notice: This way of translating the UI is for
demonstration only, I would use locates to translate the
interface. This can be done by creating properties files
where you would define the localized assets.

For the purpose of this article, i just created the
attributes and used getters and setters to retrieve and
set their values.

In another opportunity, I will show you how to translate
the user interface using resource Bundles.

When the app starts, the load function runs (see Listing
2). Then the checkLanguage function is called, it checks
the user’s system language and sets the localized text to
be applied to UI controls (see Listing 3). After that, the
localizeApplication function applies the localized text to
be interface elements (see Listing 4). The populateCombo
function then sets the localized dataProvider for the comboBox
and showInfo lists some of the Capabilities properties in
the debug panel (see Listing 5 and Listing 6).

Complete Flash Capabilities Properties List
All other information about the user system is available
in the System Info Panel. Here is a list of all Flash
Capabilities properties:

Conclusion
As you can see in this small example application, with
the use of the flash.system.Capabilites class, you can
provide your app with many cool features.

For example, you can use the serverString property
to send the information Flash Capabilities provides to a
service in your server to keep detailed statistics reports.

The example application used in this article will be
continuously updated to demonstrate other useful and
interesting topics of the Flash Platform and Object
Oriented Programming.

Comments and technical queries can be sent.

MARCELO PIRES
Marcelo Pires is a RIA Developer at RGSistemas, Brazil
Where he's currently working on the development of the ESUS
System and other interesting things
More info: www.rgweb.com.br
Contact details: email:marcelo@rgweb.com.br, twitter:@MarcPires

Listing 4. Applying localized text to UI

 /**

 * Localize the application

 */

 private function localizeApplication(language:

String=null):void

 {

 //Set UI controls to proper language

 this.appTitle.text =

this.applicationTitle;

 this.btn_send.label = this.buttonLabel;

 this.InfoPanel.title = this.infoPanel;

 }

Listing 5. Setting the dataProvider for the comboBox

 /**

 * Localize the application

 */

 private function localizeApplication(language:

String=null):void

 {

 //Set UI controls to proper language

 this.appTitle.text = this.applicationTitle;

 this.btn_send.label = this.buttonLabel;

 this.InfoPanel.title = this.infoPanel;

 }

Listing 6. Show some more info in debug panel

 /**

 * Show SystemInfo

 */

 private function showDebugInfo() : void

 {

 this.debug.text += 'Player:' +

Capabilities.playerType + '\n';

 this.debug.text += 'Audio:' +

Capabilities.hasAudio + '\n';

 this.debug.text += 'OS:' + Capabilities.os

+ '\n';

 this.debug.text += 'Printing:' +

Capabilities.hasPrinting + '\n';

 this.debug.text += 'Streaming Audio:' + Capab

ilities.hasStreamingAudio + '\n';

 this.debug.text += 'Streaming Video:' + Capab

ilities.hasStreamingVideo + '\n';

 }

//--

http://www.rgweb.com.br
mailto:marcelo@rgweb.com.br

http://www.saucelabs.com

06/2010 (14)34

FLEX DEVELOPMENT The Ultimate Checkbox List Pattern

06/2010 (14) 35

A common UI task is to add checkboxes to a grid or
a list. Instead of adding Boolean property values
to the dataProvider items, the Ultimate Checkbox

List Pattern leaves the underlying display item alone and
uses membership in a separate list or collection of items to
indicate if a row is selected (e.g. a checkbox is checked).
Often, this list of selected items itself is very useful.

The key to this pattern is anonymous, two-way
communication between the UI component (e.g.
a checkbox in an item renderer) and a controller (e.g.
in a container). The list’s controller need not know what
components are sending messages asking if this or that
item is or is not selected, and the view (i.e. the item
renderer) need not know who is listening and answering
its questions.

After introducing the Questioning Event pattern, we
will use it to create a pattern specifically for checkboxes
in lists and grids.

Using Events To Ask Questions
The Flash framework includes a messaging protocol
that passes specific objects (that descend from
flash.event.Event) from the sender to all of the listener
functions registered for that event type. Events
dispatched (aka fired, launched, broadcast, thrown) call
these event handler functions. The dispatcher does not
care how many listeners have registered themselves or
what they do: it just calls every one registered for its
event type.

If an event is flagged with the parameter bubbles, then
all of its parent and grandparent containers will also
dispatch the same event. This means that a listener
registered on a container will receive all bubbling events
dispatched by every component inside that container
(that are of the type registered).

Event handlers are, at their core, callback functions.
One can call them explicitly, but they are designed
to be registered with a dispatcher, and wait for it to
call them. One should keep these callback functions
very lightweight because dispatching events is not
asynchronous.

One fires an event by calling a dispatcher’s
dispatchEvent method, which then iterates through the
list of registered listener functions, calling each one with
the Event object as a parameter, and waiting for it to
return before calling the next listener function; then the
dispatchEvent method itself returns. The code that calls
dispatchEvent() can assume that when that call returns,
all the listeners have had a chance to see and modify
the Event object.

We can use events as bidirectional messages
between the dispatcher and the listeners, not just
a one-way notification system; the event object can
receive information from the listeners as well as present
information. Combined with bubbling events that allow
containers to get events without registering with the
originating dispatcher, this patterns allows nested objects
like ItemRenderers to ask questions of their high-level

The Ultimate Checkbox
List Pattern
Flex 4 containers are not close relatives of Flex 3 Containers.
If you want to avoid family feuds, you need to take care of
the children. In this article, we’ll find out how.

What you will learn…
• How to use events for bi-directional communication
• How to use events to manage checkboxes in lists and data

grids

What you should know…
• How events work, including bubbling events
• How to use item renderers

06/2010 (14)34

FLEX DEVELOPMENT The Ultimate Checkbox List Pattern

06/2010 (14) 35

selection status. While this might look like a lot of event
traffic, it is inexpensive traffic. Remember that the Flex
components re-use item renderers, so a grid will have
only as many as it has visible rows (plus one or two).

A custom event for checking (and changing) selection
might look like: see Listing 4.

The pattern uses this event for two types of
communication: checking selection and signaling
selection. The first time we check the selection, we also
register the notificationListener see (Listing 5).

And the list controller registers the notificationListener,
if present, and manages the changes in selection as

containers without each intermediate container passing
the events up and the results down. This relationship is
a loosely-linked one: the dispatcher does not know what
object is setting the answer properties of the Event object;
the listener does not know what object is dispatching the
Event object. The form can add or remove containers
without breaking the protocol.

For example, an ItemRenderer needs to know if the
data it is displaying is part of the set that the user wants
to focus on. The data itself does not know, but the top-
level form object does. The ItemRenderer can dispatch
an event containing its data object and a property for
the current status see (Listing 1).

The item renderer needs to use this
event to ask a question and then act on
the answer (e.g. setting the isInUserFocus
property). Note that we are creating the
new event with the bubbles parameter see
(Listing 2).

A container that holds the list or grid
with the item renderer must listen for and
answer the AmIInUserFocusEvent. Note that it
registers the listener with itself because the
bubbling event will act as if the container
dispatched the event see (Listing 3).

Checkbox Selection
Communication
Adding a checkbox to a list or data grid
involves creating an item renderer that
contains a checkbox component as well as
some ActionScript. The previous examples
show how that item renderer can dispatch
a bubbling event to which some listener in
the container will add data (e.g. answering
the question). Checkbox views not only
need to know if they are currently selected,
but also need to signal when the user
explicitly selects or de-selects them.

In addition to that, the item renderer
that contains the checkbox needs to know
when the selection list changes because
something else changed it. This allows the
UI to show the selection list, for example,
and let the user de-select items from it
as well as toggle them on and off from
a source list.

One way is to register a listener
function in the item renderer with an event
dispatcher that sends change events
whenever any part of the selection list
changes. Don’t be clever and optimize
events for specific items. Don’t depend on
the type of event passed to the listener. On
any change, every single view checks its

Listing 1. Sample event class

public class AmIInUserFocusEvent extends Event

{

 public function AmIInUserFocusEvent(type : String = AM_I_IN_FOCUS,

 bubbles : Boolean = true, cancelable : Boolean = false)

 {

 super(type, bubbles, cancelable);

 }

 public var rowData : RowData = null;

 public var isInUserFocus : Boolean;

}

Listing 2. Code inside an item renderer

private function onDataChange(aData : Object)

{

 var newEvent : AmIInUserFocusEvent = new AmIInUserFocusEvent(AM_I_

IN_FOCUS, true);

 newEvent.rowData = aData as RowData;

 this.dispatchEvent(newEvent); // ---- listeners execute here

 if (newEvent.isInUserFocus)

 text.styleName = "focusStyle";

 else

 text.styleName = "neglectedStyle";

}

Listing 3. Code in the container (aka list controller)

private function onInitialized() : void

{

 this.addEventListener(AM_I_IN_FOCUS, onFocusQuestion);

}

private function onFocusQuestion(event : AmIInUserFocusEvent) : void

{

 event.isInUserFocus = focusList.contains(event.rowData);

}

06/2010 (14)36

FLEX DEVELOPMENT The Ultimate Checkbox List Pattern

06/2010 (14) 37

well as the inquiries. Note that the selection list can be
any group of items or references, and we can listen
for Event.CHANGE or any other event that accurately
notifies the listener of changes see (Listing 6).

The Selection Toggle Event Cycle

• The view dispatches an AmISelected event with
a reference to its notification listener function in it.

• The list controller adds the event
listener
1. The user clicks the checkbox
2. The item renderer dispatches
a SELECTION _ TOGGLE event
3. The controller updates the selection
list
4. The list dispatches a CHANGE (or
COLLECTION _ CHANGE) event to all the listener
functions
5. The view’s listener functions dispatch
an AmISelected event (without a listener
reference in it)
6. The list controller received the
AmISelected event object and sets its
.isSelected property based on the list
7. The item renderer checks the
.isSelected property and updates its display
based on the answer see (Figure 1)

Multiple States and Multiple
Dependencies
In addition to controlling the selection
state, the Ultimate Checkbox List Pattern
can support any sort of operational control
within the list as well, For example, we
can use it to control which items can be
selected. The new event simply adds
an additional flag: isEnabled. Note that it
defaults to true so if the listener does not
implement any actions, it defaults to the
intended behavior see (Listing 7).

The item renderer could change the
style or behavior of the control based on
isEnabled see (Listing 8).

The list controller can use any expression
or protocol to decide if any specific rowData
should be enabled or disabled. In this
example, it uses the total number of
selected items see (Listing 9).

A complex example uses attributes of
rowData itself in combination with system or
user rights see (Listing 10).

As each event can have more than one
listener, we can use separate methods
on the controller to add separate layers
of validation for the AM_I_SELECTED events:
one method could check the user’s rights;
another could check the state of the form;
and another could enforce the maximum
number of selected items. As long as
each of these event handlers respected

Listing 4. SelectionEvent class

public class SelectionEvent extends Event

{

 public function SelectionEvent(type : String,

 bubbles : Boolean = true, cancelable : Boolean = false)

 {

 super(type, bubbles, cancelable);

 }

 public var rowData : RowData = null;

 public var isSelected : Boolean = false;

 public var notificationListener : Function = null;

}

Listing 5. Code inside an item renderer

private function onDataChange(aData : Object)

{

 var newEvent : SelectionEvent = new SelectionEvent(AM_I_SELECTED,

true);

 newEvent.rowData = aData as RowData;

 newEvent.notificationListener = this.checkSelection;

 this.dispatchEvent(newEvent); // ---- listeners execute here

 this.checkBox.selected = newEvent.isSelected;

}

private function checkSelection(event : Event) : void

{

 var newEvent : SelectionEvent = new SelectionEvent(AM_I_SELECTED,

true);

 newEvent.rowData = aData as RowData;

 this.dispatchEvent(newEvent); // ---- listeners execute here

 this.checkBox.selected = newEvent.isSelected;

}

private function onCheckboxChange(event : Event) : void

{

 var newEvent : SelectionEvent = new SelectionEvent(SELECTION_

TOGGLE, true);

 newEvent.rowData = aData as RowData;

 newEvent.isSelected = this.checkBox.selected;

 this.dispatchEvent(newEvent);

}

06/2010 (14)36

FLEX DEVELOPMENT The Ultimate Checkbox List Pattern

06/2010 (14) 37

the value that any other listener might have set (e.g. if
(event.isEnabled) ...), then we don’t have to worry about

the sequence they get called in (e.g. by using listener
priority).

Using a Proxy Event Dispatcher
Another complexity is pushing changes from
different sources to the views. For example, if
the UI has a radio button that filters out items
of a certain type, the function listening to
changes in the selection list won’t know when
that radio button changes. We could register
the notification listener to multiple sources,
however that does increase the number of
registrations in memory and makes the event
cycle a little more complicated.

Another way is to centralize the change
event notification in the controller by creating
a stand-alone EventDispatcher, registering
all notification listeners with it, and having
it proxy change events from any number of
sources. Any change to the selectionList is
forwarded by the event dispatcher through
a listener. Any other events or changes can
call announceChange() to trigger every view’s
AM_I_SELECTED event see (Listing 11).

Notes

Selection List vs. dataProvider Object
�ags

• The Ultimate Checkbox List Pattern
has several advantages over using

Listing 6. Code in the container (aka list controller)

protected var selectionList : ArrayCollection = new ArrayCollection();

private function onInitialized() : void

{

 this.addEventListener(AM_I_SELECTED, onAmISelected);

 this.addEventListener(SELECTION_TOGGLE, onSelectionToggle);

}

private function onAmISelected(event : SelectionEvent) : void

{

 event.isSelected = selectionList.contains(event.rowData);

 if (event.notificationListener != null)

 {

 selectionList.addEventListener(CollectionEvent.COLLECTION_

CHANGE,

 event.notificationListener, false, 0, true); // weak reference

 }

}

private function onSelectionToggle(event : SelectionEvent) : void

{

 if (event.isSelected && (!selectionList.contains(event.rowData)))

 selectionList.add(event.rowData);

 else ((!event.isSelected) && selectionList.contains(event.rowData))

 selectionList.remove(event.rowData);

}

Figure 1. A SELECTION_TOGGLE event cycle

���������
�������

���������������������������
�����������������������

�����������������
�����

�����������������
�����

������������
������������

���������������
����������������

�������������

��������������������������
������������������������

������������������

�������������
�����

���������
�����

��������������
������

��������������������
��������

�����������������
������������

���������������

����������������
���������������������
������������������
�����������������

������

�������������������������������
�������������������

���
��

�����������������������������������

06/2010 (14)38

FLEX DEVELOPMENT The Ultimate Checkbox List Pattern

06/2010 (14) 39

a flag in the dataProvider item to persist checked
status:

• The dataProvider items can remain pure value
object (e.g. unchanged from an loosely-linked data
module)

• The same item can have separate selection-states
on an infinite number of lists without making change
after change to a data object’s structure

• The same data value can be synchronized even
when represented by different object instances (or
even different object types). The selection list can
determine membership using an id value or values
rather than object identity.

• The list of selected items is always current and
available at a high level; one does not need to
iterate through the dataProvider items

• Items remain selected even when they are not
visible or if they are not in the dataProvider’s
collection. One can move off of a page and find
previously selected items are still selected when
one returns.

• Items can be selected and deselected across
several different views One can present the user
with both browsing lists and searching capability,
and every item on the lists and in the search results
will reflect prior and future selection states.

Setting List Controller Listeners
Setting listeners in the startup event cycle
is tricky. In general, I use addEventListener()
in the creationComplete event for listeners
on the form, however this does not work if
the checkbox list or grid is a design-time
child on the form (e.g. it’s in the MXML
or created by createChildren()). By the
time the creationComplete event fires, the
grid has already initialized and all the
item renderers have dispatched their first
AmISelected events, which receive no
answers because the listener is not set
up yet.

Register amISelected listeners in the
initialized event.

Messages vs. Interfaces
A different way of loosely linking parts
of a system is interfaces. One could
pass an instance of an interface that had
toggleSelection and amISelected methods to
an item renderer. The class of that instance
could be anything; the caller would not
know who was executing the method
and the method would not know who
was calling it. Passing an instance more
than one layer deep, however, creates
a loosely-linked chain, and the more links
in a chain, the more fragile it is.

Every container between the list
manager (e.g. the form or component’s
top-level container) would have to pass
the instance on to every child that could
hold it (probably because the children
implemented an interface themselves).
Components that had no interest in this
interface would still be responsible for
passing it on.

Messages, however, are already part of
every component’s interface: they allow
listeners to hook into the messages;

Listing 7. SelectionEvent class with isEnabled

public class SelectionEvent extends Event

{

 public function SelectionEvent(type : String,

 bubbles : Boolean = true, cancelable : Boolean = false)

 {

 super(type, bubbles, cancelable);

 }

 public var rowData : RowData = null;

 public var isSelected : Boolean = false;

 public var isEnabled : Boolean = true;

 public var notificationListener : Function = null;

}

Listing 8. Code inside an item renderer respecting isEnabled

private function checkSelection(event : Event) : void

{

 var newEvent : SelectionEvent = new SelectionEvent(AM_I_SELECTED, true);

 newEvent.rowData = aData as RowData;

 this.dispatchEvent(newEvent); // ---- listeners execute here

 this.checkBox.selected = newEvent.isSelected;

 this.checkBox.enabled = newEvent.isEnabled;

}

Listing 9. Code in the container (aka list controller) setting isEnabled

private function onAmISelected(event : SelectionEvent) : void

{

 event.isSelected = selectionList.contains(event.rowData);

 event.isEnabled = selectionList.length < MAX_SELECTION_COUNT;

 if (event.notificationListener != null)

 . . .

}

06/2010 (14)38

FLEX DEVELOPMENT The Ultimate Checkbox List Pattern

06/2010 (14) 39

the message framework moves the event objects
through the containership model; and the event objects
themselves can change without changing the interface.
One can even encapsulate some set of components
and containers into a library component and embed it in
another container without changing this pattern.

Message-Based MVC
The Ultimate Checkbox List Pattern resembles a Model-
View-Controller: the item renderer would be the view; the

list of selected items would be the model; and the event
listeners on the list manager would be the controller. In
a classic MVC pattern, the controller would push the
changes into the view, and would need to know how it

worked (i.e. what method to call or property
to push). The UCLP has the model pushing
a change notification into a generic listener in
the view, and then the view pulls the change
information from the model; the module (and
the controller, for that matter) do not know
anything about the view besides a reference
to the view’s notification listener.

Matching By Value vs. Matching By
Reference
As shown in the sample application, one can
use a more robust test to see if a rowData
is in the selected list than simply checking
getIndexOf(). While the rowData might be
a complex Value Object, this pattern also
lends itself to simple data objects that might
be dynamically created to wrap one or two
column values. In this case, the object itself
might not come from a global (i.e. singleton)
store; one might have several simple
instances that represent the same values,
but not the same instances in memory.

Make It Work For You
Use this pattern to support your needs: if
you have different representations of the
same concept and you want to select or
de-select the concept, then make the
AmISelected check if the concept is on the
list; if the objects in question are references
to singleton objects on a central list (e.g.
value objects), then check if the object
itself is referenced by the list.

Listing 10. Code in the container (aka list controller) setting isEnabled

private function onAmISelected(event : SelectionEvent) : void

{

 event.isSelected = selectionList.contains(event.rowData);

/* event.isEnabled defaults to true even if the view is not enabled,

 but might be set false by a different listener */

 if (event.isEnabled)

 {

 event.isEnabled = ((!this.isReadOnly) && (!global.isDemo) &&

 ((event.rowData.access == ALL_ACCESS) ||

 ((event.rowData.access == ACCOUNT_ACCESS) &&

 (event.rowData.ownerId == global.user.userId)) ||

 ((event.rowData.access == MANAGER_ACCESS) &&

 (event.rowData.departmentId == global.user.departmentId) &&

 (global.user.accessLevel == MANAGER_ACCESS_LEVEL)));

 }

 if (event.notificationListener != null)

 . . .

}

Listing 11. Using a proxy event dispatcher in the controller

private var _eventDispatcher EventDispatcher = new EventDispatcher();

protected var selectionList : ArrayCollection = new ArrayCollection();

private function onInitialized(event : Event) : void

{

 this.addEventListener(AM_I_SELECTED, onAmISelected);

 this.addEventListener(SELECTION_TOGGLE, onSelectionToggle);

 selectionList.addEventListener(CollectionEvent.COLLECTION_CHANGE,

announceChange);

}

private function onAmISelected(event : SelectionEvent) : void

{

 event.isSelected = selectionList.contains(event.rowData);

 event.isEnabled = selectionList.length < MAX_SELECTION_COUNT;

 if (event.notificationListener != null)

 _eventDispatcher.addEventListener(Event.CHANGE, event.notificati

onListener);

}

private function announceChange(event : Event = null) : void

{

 _eventDispatcher.dispatchEvent(new Event(Event.CHANGE));

}

On the ‘Net
Sample Application with View Source – http://�ex.santacruz-
software.com/SampleMessageBasedCheckboxListApplication/
SampleMessageBasedCheckboxListApplication.html

RICHARD C HAVEN
Richard Haven is an old-school OOP developer
who remembers the problems objects and
interfaces addressed when they were exciting
and new. His experience with Delphi and
its application framework has transferred
surprisingly well to ActionScript 3 and the Flex
application framework.
He works as a consultant, writer, international
trainer, and blogger (noclevercode.wordpress.c
om) available at rhaven@noclevercode.com

http://%ED%AF%80%ED%B3%B8ex.santacruz-software.com/SampleMessageBasedCheckboxListApplication/
http://%ED%AF%80%ED%B3%B8ex.santacruz-software.com/SampleMessageBasedCheckboxListApplication/
http://%ED%AF%80%ED%B3%B8ex.santacruz-software.com/SampleMessageBasedCheckboxListApplication/
mailto:rhaven@noclevercode.com

06/2010 (14)40

FLEX DEVELOPMENT Flex 4 – Parental Concerns

06/2010 (14) 41

Last month I explained some differences between
Flex 4’s new Spark containers and Flex 3’s MX or
Halo containers. In particular, I looked at the way

in which parent-child relationships are redefined. In the
last article, I concentrated on the differences between
MX children and Spark elements. This month I want to
look at the other side of that relationship: parents.

When you put a control into an MX container, the
container becomes the control’s parent. So if button1
is added as a child of panel1, you can enter the code
button1.parent in order to retrieve a reference to panel1.

But that is not the way Spark containers work. If you
put button1 into a Spark panel, button1.parent will retrieve
a reference to an unseen Group
object. In fact there would be
four levels of parent controls
(three Groups and a PanelSkin)
intervening between the button
and the Spark panel containing
it. In other words, while a Spark
container such as a Panel may
be the first visible parent of
a control, it is not, in fact, its
actual parent.

Parents and Owners
If you ever need to manipulate
parent/child relationships at
runtime, this can pose obvious

problems. Imagine, for example, that you want to
move a component from one container into another
in response to user interaction or size a control as
a percentage of its container. In Flex 3, you would do
this simply by accessing the control’s parent property. In
Flex 4, when using Spark containers, you can’t do that.

This is a real-world problem. It is one which my
company was forced to solve in order that to implement
a Flex 4 version of the visual design environment for our
Flash Platform IDE, Amethyst. Even though Amethyst
is built into Microsoft Visual Studio, the Amethyst
Designer is a Flex application. It allows programmers to
use MX and Spark components in the same design and

Flex 4

Finding the parent of a Flex 3 control is easy, but the
parentage of a Flex 4 control is harder to pin down. In this
article we look at some ways of tracking down the visible
parents of Spark components.

What you will learn…
• How the parent properties differ in Flex 3 and Flex 4
• Important differences between parent and owner
• How to work with MX and Spark parents in a consistent man-

ner

What you should know…
• The Flex 3 parent relationships of Containers and children
• The difference between MX and Spark containers
• How to create and build Flex 4 applications

Parental Concerns

Figure 1. This application shows that the parent of the MX Panel (on the left) is not the Spark Panel
which contains it! There are four intervening invisible parents between the MX Panel and the Spark
Panel. Our task is to �nd the �rst visible parent

06/2010 (14)40

FLEX DEVELOPMENT Flex 4 – Parental Concerns

06/2010 (14) 41

it will do so for ever or until your program crashes. So,
in short, while the owner property works like the Flex 3-
style parent most of the time it is not safe to assume that

to drag any component into any container. Whenever
a component is dropped into a container, the code has
to calculate all the parent-child relationships. These
may go many levels deep – say if an
MX button is dropped into a Spark
Panel inside an MX Canvas inside
a Spark BorderContainer inside an
MX Accordion in a Spark application.

Before the advent of Flex 4, all
these kinds of relationships could
be calculated simply by calling
parent.parent.parent and so on until
no more parents (null) were returned.
But since Spark containers have, in
effect, redefined the meaning of parent
this no longer does the trick.

This is not a problem unique to
the Amethyst Designer. Any Flex 4
application may use a mix of Spark
and MX controls (and bear in mind that
Spark has no equivalents of certain
MX controls such as Navigators, so
this is not an unlikely scenario). As
a consequence, Flex 4 developers
need a safe and reliable way of
traversing back through an unknown
number of parents in order to locate
the first visible parent.

One simple way of doing this would
be to use the owner property instead of
the parent property. The default value
of owner is the same as an MX parent.
That is, if you have button inside
a Spark Panel, button1.owner will return
a reference to the Spark Panel in just
the same way that it would if it were in
an MX Panel. But there is a problem.
While owner usually returns the visible
parent, there is no absolute guarantee
that it will do so. The parent property is
intrinsic – it is read-only and defines
an existing relationship that cannot be
changed at runtime. The owner property,
however, is writeable. It may be altered
at design time or at runtime.

For example, it is perfectly legitimate
to define button1 as the owner of
button2. This would cause huge
problems for any code which assumes
that owner always returns a reference
to a control’s container. Worse still,
button1 could set button2 to be its
owner while button2 sets button1 to be
its owner. If your code now tries to climb
back through button1’s chain of owners

Listing 1. Determine whether or not a control is a visible container

private static const SPARK_CONTAINER:String = "SPARK_CONTAINER";

private static const MX_CONTAINER:String = "MX_CONTAINER";

private static const NOT_A_CONTAINER:String = "NOT_A_CONTAINER";

public static function getVisibleContainerType(aCtrl:

DisplayObjectContainer):String {

 var cType:String = NOT_A_CONTAINER;

 if(aCtrl is Container) {

 cType = MX_CONTAINER;

 } else if(aCtrl is SkinnableContainer) {

 cType = SPARK_CONTAINER;

 } else {

 cType = NOT_A_CONTAINER;

 }

 return cType;

}

// is aCtrl some kind of (MX or Spark) Container?

public static function isAContainer(aCtrl:DisplayObjectContainer):

Boolean {

 return (getVisibleContainerType(aCtrl) != NOT_A_CONTAINER);

}

// is aCtrl NOT some kind of (MX or Spark) Container?

public static function isNotAContainer(aCtrl:DisplayObjectContainer):

Boolean {

 return (!isAContainer(aCtrl));

}

Figure 2. The Amethyst Designer is a real-world Flex application which allows developers
to create user interfaces by dragging and dropping components into both MX and Spark
Containers. Here you can see a design that nests controls several levels deep inside MX and
Spark parent containers

06/2010 (14)42

FLEX DEVELOPMENT

it will always work in that way. For a more reliable way to
find the visible parent of a control, you need to do a bit
more coding.

Finding A Visible Parent
One way of doing this would to categorize each control
as either a Spark container, an MX container or a non-
container. For the sake of simplicity I’ll assume that
you will only consider Spark SkinnableContainer
components and MX Containers as visible and will
ignore Spark Groups. You can now write some simple
functions to determine whether or not any given control
is a visible container (Listing 1). This makes it pretty
easy to write a function that returns the first visible
parent of a component (Listing 2). Assuming this code
is placed into a class called ContainerTools you can
now call ContainerTools.visibleParent(c), where c is some
component, in order to find the first MX Container or
SkinnableContainer in its chain of parents (Listing 3).

If you wanted to consider Groups as visible parents
too, you would have to decide whether or not the Groups
inside SkinnableContainers should be ignored. In most
cases, you probably would want to ignore them – that
is, you would want to treat only those Groups that have
been explicitly added to a design as being visible parents

(even though, just like MX canvases,
they may not be visible unless borders
or colours are applied). One way to do
this would be to maintain a reference
list – a simple array would do – of all
the components in your application.
When looking for parents, you would
then be able to check if a control exists
in the reference list; if not, it should be
ignored. This would ensure that, for
instance, a Panel would be in your
reference list whereas its contentPane
(this is the container, nested inside
a Panel, that actually contains the
Panel’s controls) would not.

The more checking you add to your
program, of course, the more complex
the coding becomes. For many
programs, it may be that using the
owner property will suffice. This has the
advantage of simplicity even though,
as I explained earlier, it is not wholly
bulletproof. If you plan to assign new
owners at runtime, you might want to set
a variable (called, perhaps, originalOwner)
to the initial owner value prior to doing
so. Incidentally, you should also be
aware that even though you may
explicitly assign one control as the owner
of another, in some cases, owner may
be reassigned by the Flex framework.
This is something I encountered with

SkinnableContainer objects. I assigned the owner property
of a SkinnableContainer to a specific control (which was
not in the SkinnableContainer’s chain of parents) only
to discover that Flex subsequently reassigned owner the
SkinnableContainer’s parent container.

The strategy which you adopt when handling MX
and Spark parents depends on the nature of the
application you are coding. For absolute reliability in all
circumstances, you may need to do quite a bit of hand
coding. For a simple application, the owner property may
be all you need. At any rate, I hope that my two articles
give you a few hints on various ways of dealing with the
problems posed by parents and children when using
MX and Spark containers in Flex 4 applications.

HUW COLLINGBOURNE
Huw Collingbourne is Director of Technology at SapphireSteel
Software. Over more than 20 years, he has programmed in
languages ranging from Ruby to C# and has been a technical
columnist for computer magazines such as PC Pro and PC
Plus. He is the software lead of the Amethyst Designer, the
Flex user interface design environment of the Amethyst
IDE for Visual Studio. SapphireSteel Software: http://
www.sapphiresteel.com/

Listing 2. return the �rst visible parent of a control

public static function visibleParent(aCtrl:DisplayObjectContainer):

DisplayObjectContainer {

 var theParent:DisplayObjectContainer;

 var continueLooking:Boolean;

 var returnval:DisplayObjectContainer;

 continueLooking = true;

 theParent = aCtrl;

 if(theParent != null) {

 while(continueLooking) {

 theParent = theParent.parent;

 continueLooking = ((theParent != null) && (isNotAContainer(

theParent)));

 }

 }

 returnval = theParent;

 return returnval;

}

Listing 3. Display the �rst visible parent (here ta is a TextArea)

private function showAllVisibleParents(aCtrl:UIComponent):void {

var c:DisplayObjectContainer = aCtrl;

 while(c != null) {

 c = ContainerTools.visibleParent(c);

 ta.text += "\n" + getQualifiedClassName(c);

 }

}

http://www.sapphiresteel.com/
http://www.sapphiresteel.com/

http://www.gamersafe.com

06/2010 (14)44

FLEX AND PHP Flex and PHP Charting

06/2010 (14) 45

PHP makes it incredibly easy to retrieve
information from a database and manipulate it
while Flex provides a user interface layer that

is interactive and capable of quickly calculating shapes
which is perfect for something like charting. One of the
main issues though is how to structure the data on the
PHP side in order to bring it into a Flex application.

Normally, you retrieve a set of data in a pseudo-random
order, potentially ordered by id, and then plot that data. In
a lot of cases, that works just fine. But for complex data
types or for charts where you want to make it easy to
interactively drill down into data, you have to use some
tricks of the Flex framework to plot the data correctly.
Luckily we can organize the data in PHP and send it over
in a way that makes it more simple to plot on a chart.

We'll start with a dataset from http://peakbagger.com/
that returns a number of high mountains from a few
different states. Initially, the data on the chart will show
the aggregate number of peaks with a specified minimum
level of topographic prominence (http://en.wikipedia.org/
wiki/Topographic_prominence) but allow the user to
interact with the chart and click on it to get a list of
peaks with both elevation and prominence. One of the
benefits of Flex is that we can just grab the data from
the database up front and then change the chart without
having to make another call to the database.

The structure of the data is an array of arrays with the
subarray containing data about individual peaks. The
database and object structure looks like this:

Flex and PHP

One of the places where Flex and PHP go really well
together is in creating data visualizations.

What you will learn…
• How to structure your Zend Framework application for easy

charting
• How to create interactive charts with Flex

What you should know…
• Basic knowledge of the Zend Framework project structure
• Basic knowledge of Flex

Charting

Listing 1. PHP Class for selecting data from the database

class Peaks

{

 public function getBarChartPeaks($maxStates, $minProminence)

 {

 $tbl = new Model_DbTable_Peak();

 $select = $tbl->select()

 ->from('peaks', array('state',

'prominence',new Zend_Db_

Expr('SUM(prominence) AS promTop')))

 ->group('state')

 ->order('promTop DESC')

 ->limit($maxStates);

 $rs = $select->query();

 $res = array();

 foreach ($rs as $row) {

 $where = array('state = ?' => $row['state'],

'prominence >= ?' => $minProminence);

 $stateRes = $tbl->fetchAll($tbl->getAdapter()-

>quoteInto($where,""), 'prominence

DESC');

 $res[] = $stateRes->toArray();

 }

 return $res;

 }

}

http://dl.dropbox.com/u/1346733/flex_php_code.zip
http://peakbagger.com/
http://en.wikipedia.org/wiki/Topographic_prominence
http://en.wikipedia.org/wiki/Topographic_prominence

06/2010 (14)44

FLEX AND PHP Flex and PHP Charting

06/2010 (14) 45

Using that method, there are a couple of functions that
belong in the Script block: see (Listing 2).

With data being returned correctly we can start
creating the ColumnChart: see (Listing 3).

There are two parts to this column chart, the horizontal
axis and then a ColumnSeries. The ColumnSeries is what
actually contains the data. The axis can be a linear axis,

peaks |

id int

peak_name varchar(200)

elevation int

prominence int

county varchar(200)

state varchar(2)

range varchar(200)

isolation float

When the data is returned to Flex, it's sent as an array
of arrays that we group and sort using the database
abstraction classes of the Zend Framework. The code that
is called directly from Flex looks like this: see (Listing 1.)

But these rely on a structured Zend Framework project.
The first step in the Flex application is to connect to

the PHP service.. I won't go into detail on how to do that,
instead, I'll point to this introduction to using the Data
Wizards to call PHP functions (http://www.adobe.com/
devnet/flex/articles/flashbuilder4_php_part1.html).

Listing 2. ActionScript functions for calling PHP classes

 protected function getBarChartPeaks(maxStates

:int, minProminence:int):void

 {

 getBarChartPeaksResult.token = peaksSer

vice.getBarChartPeaks(maxStates, minProminence);

 }

 protected function getBarChartPeaksResult_

resultHandler(event:ResultEvent):void

 {

 chart.dataProvider = getBarChartPeaksRes

ult.lastResult;

 }

Listing 3. MXML Code for the charts

 <mx:ColumnChart x="10" y="10" id="chart" creationCom

plete="getBarChartPeaks(5,5000);"

 type="clustered" showDataTips="true">

 <mx:horizontalAxis>

 <mx:CategoryAxis id="catField" dataFunction

="categoryFunction" />

 </mx:horizontalAxis>

 <mx:series>

 <mx:ColumnSeries id="colSeries" dataFunctio

n="dataFunction" />

 <mx:ColumnSeries id="promSeries" yField="prominence"

xField="peak_name" displayName="Prominence" visible="false" />

 </mx:series>

 </mx:ColumnChart>

Listing 4. Script block and code for creating custom data formats

<fx:Script>

<![CDATA[

import mx.charts.chartClasses.AxisBase;

import mx.charts.chartClasses.Series;

protected function dataFunction(series:Series, item:

Object, fieldName:String):Object

{

 if(fieldName == "yValue")

 {

 return item.length;

 } else if(fieldName == "xValue")

 {

 return item[0].state;

 } else {

 return null;

 }

}

protected function categoryFunction(axis:AxisBase,

item:Object):Object

{

 return item[0].state;

}

]]>

</fx:Script>

Listing 5. The clickHandler for the interactive chart

<mx:ColumnChart x="10" y="10" id="chart" creationComp

lete="getBarChartPeaks(5,5000);"

type="clustered" showDataTips="true" itemClick=

"chart_itemClickHandler(event)">

Then add the event handler in the script block:
import mx.charts.events.ChartItemEvent;

protected function chart_itemClickHandler(event:

ChartItemEvent):void

{

catField.categoryField = "name";

catField.dataFunction = null;

colSeries.dataFunction = null;

colSeries.yField = "elevation";

colSeries.xField = "name";

promSeries.visible = true;

chart.dataProvider = event.hitData.item;

}

http://www.adobe.com/devnet/flex/articles/flashbuilder4_php_part1.html
http://www.adobe.com/devnet/flex/articles/flashbuilder4_php_part1.html

06/2010 (14)46

FLEX AND PHP

06/2010 (14)

Listing 6. Code for the chart animation

<mx:SeriesSlide id="slideIn" duration="1000"

direction="up" />

<mx:SeriesSlide id="slideOut" duration="1000"

direction="down" />

<p>Modify the ColumnSeries tags to use the

SeriesSlides by adding the showDataEffect and

hideDataEffect to apply them to the chart.</p>

<mx:series>

<mx:ColumnSeries id="colSeries" dataFunction=

"dataFunction" showDataEffect="slideIn" hideDataEffec

t="slideOut" />

<mx:ColumnSeries id="promSeries" yField="prominence"

xField="name" displayName="Prominence" visible="false"

showDataEffect="slideIn" hideDataEffect="slideOut" />

</mx:series>

Listing 7. Full Flex code

<?xml version="1.0" encoding="utf-8"?>

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

 xmlns:s="library://ns.adobe.com/flex/spark"

 xmlns:mx="library://ns.adobe.com/flex/mx"

minWidth="955" minHeight="600" xmlns:peaks="services.peaks.*"

xmlns:peaksservice="services.peaksservice.*">

 <fx:Script>

 <![CDATA[

 import mx.charts.CategoryAxis;

 import mx.charts.chartClasses.AxisBase;

 import mx.charts.chartClasses.Series;

 import mx.charts.events.ChartItemEvent;

 import mx.charts.series.ColumnSeries;

 import mx.controls.Alert;

 import mx.rpc.events.ResultEvent;

 protected function dataFunction(series:

Series, item:Object, fieldName:String):Object

 {

 if(fieldName == "yValue")

 {

 return item.length;

 } else if(fieldName == "xValue")

 {

 return item[0].state;

 } else {

 return null;

 }

 }

 protected function categoryFunction(axis:

AxisBase, item:Object):Object

 {

 return item[0].state;

 }

 protected function chart_itemClickHandler(event:

ChartItemEvent):void

 {

 catField.categoryField = "peak_name";

 catField.dataFunction = null;

 colSeries.dataFunction = null;

 colSeries.displayName = "Elevation";

 colSeries.yField = "elevation";

 colSeries.xField = "peak_name";

 promSeries.visible = true;

 chart.dataProvider = event.hitData.item;

 }

 protected function getBarChartPeaks(maxSta

tes:int, minProminence:int):void

 {

 getBarChartPeaksResult.token = peaksSer

vice.getBarChartPeaks(maxStates, minProminence);

 }

 protected function getBarChartPeaksResult_

resultHandler(event:ResultEvent):void

 {

 chart.dataProvider = getBarChartPeaksRes

ult.lastResult;

 }

]]>

 </fx:Script>

 <fx:Declarations>

 <mx:SeriesSlide id="slideIn" duration="1000"

direction="up" />

 <mx:SeriesSlide id="slideOut" duration="1000"

direction="down" />

 <s:CallResponder id="getBarChartPeaksResult"

result="getBarChartPeaksResult_resultHandler(event)"/>

 <peaksservice:PeaksService id="peaksService"

fault="Alert.show(event.fault.faultString + '\n'

+ event.fault.faultDetail)" showBusyCursor="true"/>

 </fx:Declarations>

 <mx:ColumnChart x="10" y="10" id="chart" creatio

nComplete="getBarChartPeaks(5,5000);"

 type="clustered" showDataTips="true"

itemClick="chart_itemClickHandler(event)">

 <mx:horizontalAxis>

 <mx:CategoryAxis id="catField" dataFunct

ion="categoryFunction" />

 </mx:horizontalAxis>

 <mx:series>

 <mx:ColumnSeries id="colSeries"

dataFunction="dataFunction" showDataEffect="slideIn"

hideDataEffect="slideOut" />

 <mx:ColumnSeries id="promSeries" yField=

"prominence" xField="peak_name" displayName="Prominence"

visible="false" showDataEffect="slideIn" hideDataEff

ect="slideOut" />

 </mx:series>

 </mx:ColumnChart>

</s:Application>

http://ns.adobe.com/mxml/2009
library://ns.adobe.com/flex/spark
library://ns.adobe.com/flex/mx

06/2010 (14)46

FLEX AND PHP

06/2010 (14)

which would show sequential values, a date/time axis,
or a logarithmic axis. To plot more arbitrary values, for
instance, a group, use the CategoryAxis. For this, the
data is states, so the CategoryAxis is used. There is just
one piece of data to chart, the number of peaks in each
state, so we just need one ColumnSeries.

Normally, if the data is flat, you can use the xField and
yField properties of the ColumnSeries component and set
them to corresponding keys in the object. If you have
a more complex dataset, like an array of arrays, you need
to manipulate the data before charting it. The dataFunction
property can be set on both axes and series to do just that.
It takes a function as a value and then the function returns
the value that you want to appear on the chart. Create
a function called categoryFunction for the CategoryAxis and
a function called dataFunction for the ColumnSeries and put
them in between the fx:Script tags see (Listing 4).

The category function is pretty straight forward. It
will be called as many times as there are arrays in the
main array. It just pulls the state out and returns it as
a category. The function for ColumnSeries is a bit more
complicated. Any series with values has both x and
y values and the dataFunction needs to return both of
those. It is called twice the number of times as there
are arrays in the main array because it gets called for
both the x and the y values. Using the fieldName property
we can figure out which one is being called. If it's the
yValue then we return what we want to plot, the number
of peaks in that array. If it's the xValue then we want to
make sure it's associated with the category so we return
the state.

If you run the application now, you'll see the count of
peaks on the chart. Now lets allow users to drill down
into the individual state and see the elevation and
prominence of each peak. In Flex you can attach events
for specific user actions on the chart. In this case add an
itemClick handler and function to the ColumnChart so that
your chart XML data looks like this: see (Listing 5).

Because the data structure is just an array of
objects we can null out the dataFunctions on both the
CategoryAxis and the ColumnSeries and replace them with
the yField and xField values for the data we want to
chart. In this case, we'll plot the elevation along the Y
axis and show the name of the peak along the X axis.

The last step is to add some animation so that when
the user clicks on the chart, the chart fades away and
appears gracefully. To do that, we can use the series
effects. Add a couple of SeriesSlide tags in between the
fx:Declarations tags see (Listing 6).

And that's all there is to it. Now you can run the
application and see the final result. Here’s the full Flex
code: see (Listing 7).

KEVIN SCHROEDER, RYAN STEWART

Flex and PHP Charting

http://www.flashandmath.com

06/2010 (14)48

INTERVIEW Building Expert Systems in Flash with Exsys Corvid

06/2010 (14) 49

Who is Exsys Inc?
Exsys is a company specializing in expert system
development tools. We have been in the expert system
business for 27 years – a very long time for any
software company, and essentially forever for an expert
system company. Exsys was one of the first companies
to produce expert system development tools for PCs
(others were aimed at LISP machines when we started)
and the first to find a practical way to field interactive
expert systems on the web.

Our focus has been to produce expert system development
tools that could be easily learned by non-programmer
domain experts, but with the power and flexibility needed
to handle the logic of complex real world problems. Most
systems are delivered over the web with user interfaces
implemented in Java or HTML, but our recent interface with
Adobe Flash enables the most complex user interfaces and
greatly extends what can be done with Flash.

What are Expert Systems?
The term Expert System is used for many types of
programs that provide advice on a complex decision-
making or support task comparable to what an end user
would get from a human expert on the subject. Some are
rather simplistic implementations of a single decision tree,
where the user’s input basically takes them out through
the branch points of the tree to an end point that is the
answer or advice. This type of simple logic is easy to
implement in many ways, from linked HTML pages to

virtually any programming language. However, most
significant real-world decision-making tasks are not so
simple. They require simultaneous consideration of
multiple independent, sometimes competing factors, often
with levels of probability or confidence that must all be
folded together to produce the best advice. These are the
types of systems that have much higher value since they
can automate and disseminate knowledge and advice
that would otherwise require access to a human expert.
To build such systems requires separating the logic of the
decision-making process from an Inference Engine.

We consider expert system to mean systems that
perform a complex decision-making task through
an inference engine that utilizes human readable
rules describing the expert’s logic and process. This
dynamically drives a session that emulates an interactive
conversation with the human expert to produce situation-
specific advice tailored to the end user.

What is an Inference Engine?
Very simple logic can just be hard coded using nested
IF statements in almost any programming language.
However, complex, probabilistic logic becomes very
difficult to hard code, and a maintenance nightmare due
to the ripple effects of seemingly minor changes. The
solution is to have a way to describe the steps and factors
the expert uses to make a decision that is easy to read and
maintain, which can also be used by a computer to drive an
interactive session. The Inference Engine is the program

Building Expert Systems in Flash
with Exsys Corvid
Add Complex Logical Processing to Flash

Dustin Huntington has been a leader in the expert system field for almost
30 years. He is the primary author of several of the most popular expert
system development tools and inference engines. He received his BS
and MS degrees in physics and numerical analysis for Steven’s Institute
of Technology. Specializing in advanced technology, Dustin has worked
in several government agencies and consulted with many companies
worldwide. In 1983 he established Exsys Inc. and it’s flagship expert system
software. With tens of thousands of users, the company’s products continue
to evolve focusing on enterprise-wide knowledge distribution and new
web technology needs. Exsys systems can be delivered online via web
browsers, making this technology particularly effective for interactive web sites to provide advice
for diagnostics, product support, regulatory compliance, pre-sales advice, HR and a wide range of
other areas needing expert decision-making advice.

Dustin Huntington,
President of Exsys Inc.

06/2010 (14)48

INTERVIEW Building Expert Systems in Flash with Exsys Corvid

06/2010 (14) 49

It is a tool for describing ANY type of decision-making
logic and it has been used in an amazingly wide range of
domain areas. It has been used for diagnostics, pre-sales
product advice, regulatory compliance, environmental,
manufacturing, construction, help desks and many other
areas. Systems include everything from how to irrigate
peanuts for maximum yield, to real-time configuration of
a Navy warship’s electrical systems to take an incoming
missile strike.

From in-house support systems to customer service
subscriptions, to public facing interactive aids to commercial
apps; the fielded application range is vast. Most of our
customer’s consider their Exsys systems such a strategic
advantage they do not allow us to talk about them, but you
can see what some of our users have done on our Case
Studies page at http://www.exsys.com/cases.html

How is Exsys Integrated with Flash?
While expert systems can be embedded and invisible,
most are interactive and emulate a conversation with
a human expert. The inference engine dynamically

that does this. It allows the expert to write readable If/Then
rules, similar to the way they would explain how they
made a decision to another person. The inference engine
processes those rules to determine:

• Which ones are relevant to what it is trying to
determine

• What information it needs to evaluate the IF
conditions of the relevant rules

• If there are other rules that can be used to derive
the information it needs

• If necessary, what questions it should ask of the
end user

• How to ask the questions of the end user
• Determining when it has enough information to

reach a conclusion
• Presenting the conclusion (advice) to the end user
• Performing procedural operations as needed by the

system
• Providing external interfaces to databases and

other programs
• Using Resource Files for systems that run in

multiple languages

In effect, the Inference Engine handles all the difficult
issues that would have to be hard coded, and
allows the actual decision-making logic to be stated
in a relatively free-form way that does not require
programming knowledge.

How are Exsys Expert Systems Built?
Exsys provides a well proven, proprietary inference
engine implemented in Java. This inference engine
is designed to work with the rules created using the
Exsys Corvid® Development Tools. Corvid enables
you to rapidly describe the expert’s logic and process
used to solve a particular problem. It provides an easy
way to build and structure IF/Then rules in English (or
any other language) and algebra. The rules are easy to
create, read, understand and maintain. Exsys Corvid
is designed to be simple to learn. The fundamentals
of building systems can be learned in a few hours with
on-line tutorials. (See how easy it is yourself, a free 30
day version of Corvid can be downloaded from: http://
www.exsys.com/download.html). Corvid systems can
be run using our Java based Exsys Inference Engine
with a variety of end user interfaces, including Flash.

Who has Used Exsys Tools to Build Expert
Systems?
Exsys has over tens of thousands of users worldwide
including most of the Fortune 100 companies, government
agencies, hundreds of universities and many types of
organizations, which have built high value expert systems.
Corvid is not a niche tool aimed at only one type of problem.

http://www.exsys.com/cases.html
http://www.exsys.com/download.html
http://www.exsys.com/download.html

06/2010 (14)50

INTERVIEW

determines what information is needed based on
information previously provided. Earlier answers may
have made some questions unnecessary or have
indicated areas that need to be examined in more detail.
Since the expert system asks questions dynamically
driven by the logic and process of the human expert,
the sequence and depth of questions matches
a conversation with the human expert. Once all the
necessary questions have been asked, the system can
provide situation-specific advice to the end user.

The processing of the rules and logic is handled by
the Exsys Inference Engine, but there are many options
as to how the questions and advice are presented to the
end user. Exsys supports various options for the end
user interface. Systems can even be designed to run
in multiple languages. The simplest approach is to run
systems on the client machine in a Java applet and ask
questions in the applet window. Systems can also be
run with a Java Servlet version of the Exsys Inference
Engine. This can either generate HTML forms to ask
questions or use Flash SWF files for the interface.

When using a Flash interface, the Flash program sends
data to the Exsys Runtime (Inference Engine) by posting
data to the Java servlet via a URL. The inference engine
processes this data, and using other data and the rules
in the system, determines what question to ask next.
Exsys then sends information on what to ask back to
the Flash program as XML data. This data can include
all the information the Flash program needs to ask the
question(s), such as prompts to use, allowed value options,
limits, graphics, language options, etc. The Flash program
takes this information and configures the interface to ask
the question(s). It can even load a different SWF if needed

to ask questions in a different way (Figure 1). When the
end user provides their answers, this new data along
with a session ID is passed back to the Corvid Runtime
on the server, which will process it and send back XML
for the next question. This repeats as many times as
needed until the system reaches its conclusions. At
that point the XML data sent back from Exsys can be
used by Flash to display the results and advice to the
end user – which could include graphics, animation,
video, sound, etc. Since the individual servlet session is
suspended while it waits for the end user interaction on
the client side, this approach is highly scalable even for
high demand systems.

One of the many advantages of this approach is that
the Flash interface layer is completely separate from the
system logic. Flash is used to create beautiful interfaces,
which is what it does best. None of the decision-making
logic has to be coded in Flash. That is all handled in the
servlet-based inference engine. Changes in the logic
only require modification of the Exsys Corvid system
files on the server with no change in the Flash program.
Likewise, If there are changes in the user interface, just
modify the Flash program and the system logic does not
have to be touched. Different development teams can
work on each aspect independently without problems.

The same system can even be delivered in Flash
and non-Flash versions. It only takes a few changes to
modify the user interface that the Inference Engine uses.
A system can easily be converted to use HTML forms
rather than Flash – however, obviously HTML (even
HTML5) does not offer the flexibility and power of Flash.

For the technical details of the Exsys/Flash interface
see: http://www.exsys.com/FlashDetails.html (This
document assumes a working knowledge of Exsys
Corvid and the Exsys Servlet Runtime)

What Else Does
the Exsys/Flash Interface Offer?
Using the Exsys Inference Engine under Flash provides
many other capabilities besides traditional expert systems.
Exsys is designed to allow complex logic and analysis to
be easily described and offers many types of external
interfaces. Flash systems needing to do complex logical
processing that is difficult to do in Action Script, can off-
load that job to the Exsys Inference Engine on the server.
This is particularly true of systems that do pre-sales
probabilistic product recommendation – a big competitive
advantage capability enabling e-commerce sites to provide
end users with expert analysis and recommendations of
what product is best for individual site visitors. This type of
logic is quite difficult to hard code, but Corvid has features
specifically for this type of problem.

The Exsys Inference Engine is very powerful and easy
to integrate with Flash. Instead of trying to program, debug
and maintain decision-making logic in Action Script,
a small Exsys Corvid program is a much easier solution.Figure 1. Exsys Corvid Servlet Image

http://www.exsys.com/FlashDetails.html

http://www.fusioncharts.com/flex

06/2010 (14)52

BOOK REVIEW

What I admire the most about Adobe’s classroom series
is that they are not like traditional books containing
hundreds of pages and doing a job that is meant for
a documentation or a reference. Rather they take the
reader alongside in a step by step manner and frame-
up the skills while doing small amusing projects.

This book consists of thirteen chapters and discusses
almost all the aspects of Adobe Catalyst CS5; from
utilizing artwork to creating pages full of states and
transitions. It also has a chapter on Audio/Video
integration and few chapters concentrating on stuff
that interests RIA designers. Catalyst made RIA
development in hands of designers? Isn’t the idea
behind it contemplating? Anyways, it finally discusses
some round tripping and most interesting subject (for
me at least) taking projects to Flash Builder 4.

Only problem with this book is that I didn’t find
sufficient information about Catalyst-Flex workflow.

Concisely speaking, if you are designer and you want
to do some RIAs, then Catalyst along with this book
is the right thing for you. Though in my opinion RIA
developers still do need a separate book for Catalyst-
Flex workflow that targets large applications.

by Ali RAZA
Adobe Certified Instructor
Sun Certified Java Programmer
Zend Certified Engineer

Adobe Flash Catalyst CS5
Classroom in a Book

Table of Contents
1 Getting to Know Flash Catalyst
2 Preparing, Importing, and Placing Artwork
3 Managing the Library
4 Managing Layers
5 Working with Pages and States
6 Creating Interactive Components
7 Creating Transitions and Action Sequences
8 Adding and Controlling Video And Sound
9 Integrating SWFs from Other Creative Suite Tools
10 Designing with Data
11 Drawing and Editing Artwork
12 Publishing a Project
13 Extending Your Project Using Adobe Flash Builder

Authors: The Adobe Creative Team
Publisher: Adobe Press
ISBN: 978-0-321-70358-3
Pages: 368
Website: http://www.adobepress.com/bookstore/product.
asp?isbn=0321703588

http://www.adobepress.com/bookstore/product

http://actionscriptjobs.com/

	Cover
	Editor’s Note
	CONTENTS
	Flash Player 3D is Coming Soon!
	The Minority Report
	IN BRIEF
	SourceMate: An ActionScripter’s Toolbox
	ENTITY Data Interchange Evolved
	Setting up model-driven development with LiveCycle Data Services ES2
	The right SmartfoxServer protocol for multiplayer games
	Monetizing Your Web Game Part 1
	Using Flash Capabilities in Flex Apps
	The Ultimate CheckboxList Pattern
	Flex 4 Parental Concerns
	Flex and PHP Charting
	Building Expert Systems in Flash with Exsys Corvid Add Complex Logical Processing to Flash Dustin Huntington, President of Exsys Inc.
	Adobe Flash Catalyst CS5 Classroom in a Book

